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Introduct.ion & Some familiarity with NLP
foundations




‘ Motivation: Why change (and variation) matters

If you are a historian, sociologist
or interested in societal changes

If you are a linguist If you work on Al




‘ Semantic change is fundamental to human language

He was an 2
awesome leader!




‘ Motivation: Why change (and variation) matters

If you are a linguist If you work on Al

-l If you are a historian,
: sociologist or interested
in societal changes




Current modus operandi

Y, @ Works well iff:
o | = = Domain is very similar to
' | ; ,,,oﬁ) the training dataset

el

% P - Finetuning on suitable
dataset is possible

Problematic in cases of:
= Language change
= Language variation
= Any domain change




‘ Models do not age well
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‘ Motivation: Why change (and variation) matters

If you are a linguist

If you work on Al

-l If you are a historian,
: sociologist or interested
in societal changes
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‘ Text is a litmus paper of our societies and culture
British

Academic papers Resolution, act

/ Ce”; Space, Object

\

Husband, love
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‘ Biases in Language Models
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http://projector.tensorflow.org/

Bias is neither good or.bad
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Why change (and also variation) matters?

If you are a historian, sociologist
or interested in societal changes

If you are a linguist If you work on Al
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How did we do it before?
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How do we do it now?



‘ Advance linguistic research

®: can category membership explain semantic change?

0.7¢ X eeraerts Diagram (2.11): Dutch Verduwen/verdouwen in the 19th century (Geeraerts
r=.36, p<.001, permutation test 1992:198).
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Dubossarsky, Tsvetkov, Dyer, & Grossman, Word Structure and Word Usage, 2015
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‘ Questions on the motivation?

If you are a historian, sociologist
or interested in societal changes

If you are a linguist If you work on Al
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Change is Key!

The study of contemporary and historical societies




Change is Key!
Facts

years
partner universities
Members from 4 countries

Countries, with advisors

People including a SE & PM

MSek from RJ + 10.5MSek from the
University, Faculty, Dept

Universitat Stuttgart

Institut fir Maschinelle Sprachverarbeitung

\Qa’ Queen Mary

University of London

II LINKOPING
& UNIVERSITY

LUNDS UNIVERSITET GOTEBORGS UNIVERSITET
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Activities in the community

EACL Tutorial
Malta, Mar 21, 2024 -

Evolang workshop ~ J
Madison US, May 18, 2024 e
LChange’24

Bangkok, Aug 15, 2024



Change is Key!
Goals
Language level change

Societal level change

No one
has applied
state-of-the-art
Lexical Semantic Change
to many of these
problems

Gender Studies

Computational

models of

meaning and
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‘ How does semantic change research work?
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Day 1: Comparing Representations
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https://colab.research.google.com/drive/1JBW5pQ3-HxilyiJuZMREG8uBzzkQwuPS?usp=sharing



https://colab.research.google.com/drive/1JBW5pQ3-HxilyiJuZMREG8uBzzkQwuPS?usp=sharing

We need a model for........

it's everywhere,
its effects can be felt,
but you cannot see or touch it.

Meaning

change
-> meaning is the dark matter of language

Courtesy of Prof. Dirk Geeraerts

27



How does semantic change research work?
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Today Wednesday (by Pierluigi)

Models of

. + Models of change
meaning
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The distributional hypothesis

Words occurring in similar contexts tend to
have similar meanings (Zellig Harris, 1954)

You shall know a word by the
company it keeps (Firth, J. R. 1957:11)
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Meaning “perceived” by computational models
Two operationalizations of the distributional hypothesis
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DH is the root of all computational models of meaning

Explicit

Machine models

translation
Sentiment Static
analysis

embeddings

Contextualized
models

Information
retrieval
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‘ Count-based models

Simple co-occurrence models within a context window
Very sparse

Context words

Taken from https://corpus.byu.edu/

Explicit
models
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https://corpus.byu.edu/

Explicit
models

Count-based models Years

N
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Explicit
models

Count-based models

= (Can be computed on a very small “local” corpus
-> Highly dependent and reflects the meaning of the corpus/domain
-> More apparent here as modern LM require massive corpus for pre-
training, therefore more “global” in nature.

= Problem: Highly skewed for frequent collocates
= Prepositions, function words (stopwords)
= Solution: PPMI
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Explicit
models

Positive Pointwise Mutual Information (PPMI)

= Co-occurrence models with a twist
= Twist: Mutual information measures the strength of association
between the target word and its co-occurring words

Wj =menss  wy=reppicheter  wiwg dodo  wy s ceiliegling

Wiy =B PSS % 56-7 60 |° ol[°)]

14
vocabulary size

= Learn associativity by informativity
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Explicit

models
‘ Positive Pointwise Mutual Information (PPMI)
= Only “strong” co-occurring words are retained, hence “positive” PMI
P(w,c
PPMI(w,c) = max(log, (w:) ,0)
P(w)P(c)
Count(w,context)
computer data pinch result sugar
apricot p(w,context) p(w)
apple computer data pinch result sugar
digital apricot PPMI(w,context)
informatioZP?t'el computer data pinch result sugar
igita .
informc,moapprlcot - - 225 = 229
apple - - 225 - 2.25
p(context) d|g|ta| 1.66 0.00 = 0.00 =
From Speech and Language Processing (3™ ed.) DAt 0.u0 057 = U] -
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Explicit
models

Advantages of explicit models (count-based & PPMI)

Wj = news wy = reporter w; = do w,, = ceiling

w; = broadcast 1.7 0.9 0 0 ]

Enables a finer analysis of change (association level)
= Long history in CL research: Stefanowitsch & Gries Collostructions

Analysis (2003)
suspe( minister 11.26 chest attack 13.4
cut | numbers 9.51 pacemaker | emotion 4.9
numbe cut 10.1 central 4.5
warmth 3.2




PPMI vs. simple count-based

PPMI
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Implicit (predictive)
models
Language Models (LM)

X Al inside

= Word2vec (Mikolov et al. 2013) is a Neural Network model
= Other highly similar models exist (FastText, Glove)
= Shallow network: 1 layer

= Uses known NN machinery: MLM, objective function, wiel)

Predictive models (word2vec)

w(t2)

— T Z Z logp(wt—i—j | 'wt) Wiy ———b
t=1 —n<j<n,#0

7

wt+)

= Vectors are opaque “implicit” & vector spaces are incomparable

w(i+2)
wW; = news wy, = reporter w; = do w,, = ceiling

w; = broadcast 1.7 0.9 0 0
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w; = broadcast




Image from Jay Alammar’s blog Implicit (predictive)
models
Language Models (LM)

Training a Language Model o
‘ X Al inside

Unsupervised Pre-training

Correct output (label):
Input (features) a robot must Obey

\ context
Model
_

Output (Prediction) exterminate

v

exterminate

No, should have been | ODEy
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Courtesy of Francesco Periti Implicit (predicti\le)
models
Language Models (LM)

‘ Static+count vs. contextualized models
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trained / pre-trained pre-trained / fine-tuned
Word2Vec BERT - mBERT
FastText RoBERTa - XLM-R
GloVe XL-LEXEME
word-level approaches word usage-level approaches
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https://papers.nips.cc/paper_files/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
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Static+count vs. contextualized models
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Contextualized models

5 10 15

Words in similar contexts tend to

have similar meanings (Harris)



Take homes

Semantic change has wider implications, linguistic research is only one of them

Many models of (computational) meaning exist

o ANl models (that were described) are based on the DH
» DH has its limitations
» There are other types of models

= The most recent (best?) model is not necessary the most suitable one
» This largely depends on the research hypothesis and domain of work
» "0ld” models have their advantageous

43
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Some familiarity with NLP

See you tomorrow

Evaluation Worked with text before
Models of change Interest in semantic change

Research applications Have your ideas for

research applications
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Homework!

Please register to DUREL for tomorrow’s class at:
https:/durel.ims.uni-stuttgart.de/register
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