Introduction to Semantic Change Research & its foundations in Distributional Semantics

1 Pri

Haim Dubossarsky, h.dubossarsky@qmul.ac.uk

Hello

Haim Dubossarsky

¹Queen Mary University of London (QMUL) ²Language Technology Lab, University of Cambridge ³The Alan Turing Institute <u>h.dubossarsky@qmul.ac.uk</u> **Researcher @ Change is Key!**

Hello

Pierluigi Cassotti

Researcher @ Change is Key! Department of Philosophy, Linguistics and Theory of Science University of Gothenburg (Sweden) <u>pierluigi.cassotti@gu.se</u>

Hello

Roksana Goworek

2nd year PhD student Queen Mary University of London (QMUL) <u>r.goworek@qmul.ac.uk</u>

Schedule & expectations

Motivation: Why change (and variation) matters

If you are a linguist

If you are a historian, sociologist or interested in societal changes

If you work on AI

Semantic change is fundamental to human language

Motivation: Why change (and variation) matters

If you are a linguist

If you are a historian, sociologist or interested in societal changes

If you work on AI

Current modus operandi

Works well iff:

- Domain is very similar to the training dataset
- Finetuning on suitable dataset is possible

Problematic in cases of:

- Language change
- Language variation
- Any domain change

Models do not age well

Dhingra et al. 2022

Motivation: Why change (and variation) matters

If you are a linguist

If you are a historian, sociologist or interested in societal changes

If you work on AI

Text is a litmus paper of our societies and culture

British

Biases in Language Models

Bias is neither good or bad

Why change (and also variation) matters?

If you are a linguist

If you are a historian, sociologist or interested in societal changes

If you work on AI

How did we do it before?

1 Passagei più complesi di min Intata quando le aveva storaro i torres a quando le avera scostaroi carante A his charters and the second and th con lei punto. E toccasta Monta Pattare con lei delle solur Va la Pussione che autre Land Volena di più. Ma non pensara solo ani GH placeya la aira A come method to the state The sumpling of the second of diate front Alaca morbida ovunque... biblioteca

By close reading!

How do we do it now?

Advance linguistic research

Dubossarsky, Tsvetkov, Dyer, & Grossman, Word Structure and Word Usage, 2015

Questions on the motivation?

If you are a linguist

If you are a historian, sociologist or interested in societal changes

If you work on AI

Change is Key!

The study of contemporary and historical societies

https://www.changeiskey.org/

Change is Key! Facts

Universität Stuttgart Institut für Maschinelle Sprachverarbeitung

Activities in the community

EACL Tutorial Malta, Mar 21, 2024

Evolang workshop Madison US, May 18, 2024

LChange'24 Bangkok, Aug 15, 2024

Change is Key! Goals

Language level change

Societal level change

No one has applied state-of-the-art Lexical Semantic Change to many of these problems

How does semantic change research work?

time

Day 1: Comparing Representations

https://colab.research.google.com/drive/1JBW5pQ3-HxilyiJuZMREG8uBzzkQwuPS?usp=sharing

We need a model for

it's everywhere, its effects can be felt, but you cannot see or touch it.

Meaning change -> meaning is the dark matter of language

How does semantic change research work?

time

The distributional hypothesis

Words occurring in similar contexts tend to have similar meanings (Zellig Harris, 1954)

You shall know a word by the company it keeps (Firth, J. R. 1957:11)

Meaning "perceived" by computational models

Two operationalizations of the distributional hypothesis

Words in similar contexts tend to have similar meanings (Harris)

DH is the root of all computational models of meaning

Count-based models

Simple co-occurrence models within a context window Very sparse

Taken from https://corpus.byu.edu/

Count-based models

Years

			\sim									\subseteq									
	CONTEXT	ALL	1810	1820	1830	1840	1850	1860 187	70 1880	1890	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
	Contract																				
(RADIO	454								1			15		98	69	52			38	35
(TELEVISION	161											4	3	6	28	15	24	33	29	19
	NEWS	161					1		1			3	3	7	27			30			
	STATION	115											4	11	35			10	9	9	5
A	STATIONS	111											5	13	23			7	12	10	12
	TV	79																7		28	19
	LIVE	77																15	18	16	18
	NETWORK	61												5	14			6	5	10	14
	SPEECH	61											2	18	16			4	4	2	2
	PROGRAM	60			_								1	15	15	"		7	3	3	1
	SCATTERED	44					5		7	4	7	5	2	1	1			1			
)	TONIGHT	43			-								3	5	15			1	1	3	1
Context ≺	ADDRESS	41											4	11	15			1	4		1
words	THROUGHOUT	37				1	2				2		7	6	1			з	2	2	3
words	LOCAL	37									1		4					5	3	8	5
	NBC	36											1	8	5			5		8	4
	MEDIA	36															4	6	10	11	
A	SUNDAY	36												5	14			1	3	1	1
(NA)	WEEKLY	34			_								1	4	14			1	2	3	1
A CAR	SPREAD	34				2			3	2	7	12	4					1			1
	MOSCOW	31			-		_				_	_	1	3	10	9	4	2	1		1
	MATERIAL	31											1	1	20	1	1	4		3	
Sec. 1	CABLE	30											1						6	12	11
TOWEND CONTRACTOR	MESSAGE	30			_									4	7	5	3	6			2
	SOWN	29			1	2	2	7 1	2	7	2	1	2		1	1					

Count-based models

 Can be computed on a very small "local" corpus

 -> Highly dependent and reflects the meaning of the corpus/domain
 -> More apparent here as modern LM require massive corpus for pretraining, therefore more "global" in nature.

- **Problem**: Highly skewed for frequent collocates
 - Prepositions, function words (stopwords)
 - Solution: PPMI

Positive Pointwise Mutual Information (PPMI)

- Co-occurrence models with a twist
 - Twist: Mutual information measures the strength of association between the target word and its co-occurring words

Learn associativity by informativity

Positive Pointwise Mutual Information (PPMI)

• Only "strong" co-occurring words are retained, hence "positive" PMI P(w,c)

 $PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$

74		Count(w,c	ontext	t)				
	comput	er data	pinch	result	sugar			
apricot		р	(w,con	text)			p(w)	
apple		computer	data	pinch	result	sugar		
digital	apricot							
informatio	apple digital informatio		comp	outer	data	pinch	result	sugar
		appricot		-	_	2.25	-	2.25
		apple			-	2.25	<u>_</u>	2.25
	p(context)	digital		1.66	0.00	-	0.00	-
(3rd od)		information		0.00	0.57	-	0.47	-

From Speech and Language Processing (3rd ed.)

Advantages of explicit models (count-based & PPMI)

	$w_j =$	news	$w_k = r$	eporter	$w_l = do$			$w_m = ceiling$			
$w_i = broadcast$	1.7		0.9			0			0		

- Enables a finer analysis of change (association level)
 - Long history in CL research: Stefanowitsch & Gries Collostructions Analysis (2003)

PPMI	90						
ministe	PPMI for prime ²⁰						
suspe	minister	11.26					
cut	numbers	9.51					
numbe	cut	10.1					

PPMI for <i>heart</i> ^{medical}								
attack	PPMI for <i>heart</i> standard							
chest	attack	13.4						
pacemaker	emotion	4.9						
	central	4.5						
	warmth	3.2						

PPMI vs. simple count-based

Implicit (predictive) models Language Models (LM)

Predictive models (word2vec)

wít

w(t-2)

w(t-1)

w(t+1)

- Word2vec (Mikolov et al. 2013) is a Neural Network model
 - Other highly similar models exist (FastText, Glove)
 - Shallow network: 1 layer
 - Uses known NN machinery: MLM, objective function,

$$J_{ heta} = rac{1}{T} \sum\limits_{t=1}^{T} \;\; \sum\limits_{-n \leq j \leq n,
eq 0} \log p\left(w_{t+j} \mid w_t
ight)$$

Vectors are opaque "implicit" & vector spaces are incomparable

Training a Language Model

Implicit (predictive) models Language Models (LM)

Implicit (predictive) models Language Models (LM)

Static+count vs. contextualized models

♥ ♥ ♥ ♥ ♥ ♥ ♥ Plane ♥ ♥ ↓ ♥ ↓ ♥ ↓ ↓ ♥ ↓ ↓ ♥ ↓ ↓ ♥ ↓ ↓ ♥ ↓ ↓ ♥ ↓ ↓ ♥ ↓ ↓ ♥ ↓ ↓ ♥ ↓ ♥ ↓ ♥ ↓ ♥ ↓

trained / pre-trained

Word2Vec FastText GloVe

word-level approaches

pre-trained / fine-tuned

<u>BERT - mBERT</u> <u>RoBERTa - XLM-R</u> <u>XL-LEXEME</u>

word usage-level approaches

Static+count vs. contextualized models

PPMI

You shall know a word by the company it keeps (Firth)

Contextualized models

Words in similar contexts tend to have similar meanings (Harris)

Take homes

- Semantic change has wider implications, linguistic research is <u>only one</u> of them
- Many models of (computational) meaning exist
 - **All** models (that were described) are based on the DH
 - DH has its limitations
 - There are other types of models
 - The most recent (best?) model is not necessary the most suitable one
 - This largely depends on the research hypothesis and domain of work
 - "Old" models have their advantageous

Homework!

 Please register to DuREL for tomorrow's class at: <u>https://durel.ims.uni-stuttgart.de/register</u>