ChiWUG: A Graph-based Evaluation Dataset for Chinese Lexical Semantic Change Detection


Recent studies suggested that language models are efficient tools for measuring lexical semantic change. In our paper, we present the compilation of the first graph-based evaluation dataset for lexical semantic change in the context of the Chinese language, specifically covering the periods of pre- and post- Reform and Opening Up. Exploiting the existing framework DURel, we collect over 61,000 human semantic relatedness judgments for 40 targets. The inferred word usage graphs and semantic change scores provide a basis for visualization and evaluation of semantic change.

Proceedings of the 4th Workshop on Computational Approaches to Historical Language Change