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Lexical Semantic Change (LSC) is the task of identifying, interpreting, and assessing the possible change over time in

the meanings of a target word. Traditionally, LSC has been addressed by linguists and social scientists through manual

and time-consuming analyses, which have thus been limited in terms of the volume, genres, and time-frame that can be

considered. In recent years, computational approaches based on Natural Language Processing have gained increasing attention

to automate LSC as much as possible. Signiicant advancements have been made by relying on Large Language Models

(LLMs), which can handle the multiple usages of the words and better capture the related semantic change. In this article, we

survey the approaches based on LLMs for LSC and we propose a classiication framework characterized by three dimensions:

meaning representation, time-awareness, and learning modality. The framework is exploited to i) review the measures for

change assessment, ii) compare the approaches on performance, and iii) discuss the current issues in terms of scalability,

interpretability, and robustness. Open challenges and future research directions about the use of LLMs for LSC are inally

outlined.

CCS Concepts: · Applied computing → Language translation; · Computing methodologies → Natural language

processing; Lexical semantics.

Additional Key Words and Phrases: Lexical Semantics, Lexical Semantic Change, Semantic Shift Detection, Large Language

Models

1 Introduction

In recent years, Natural Language Processing (NLP) has gained increasing attention due to the unprecedented
capabilities of Large Language Models (LLMs) in facilitating linguistic analyses of human language. Among
these analyses, the digitization of historical text corpora has recently prompted the use of LLMs to support and
automate the study of language from a diachronic perspective. Language is viewed as a dynamic entity over time
where words can undergo lexical semantic change - i.e., łinnovations which change the lexical meaning rather
than the grammatical function of a formž [15]. As an example, consider the change of the word gay, shifting from
meaning cheerful to homosexual in the last century [53].
This phenomenon has long been studied by linguists and other scholars in the humanities through time-

consuming manual activities [13]. For instance, conventional methods for detecting, interpreting, and assessing
semantic change primarily rely on łclose readingž and require arranging hypotheses and testing procedures
to build extensive catalogues of word descriptions. These analyses keep humans łin-the-loopž and have thus
been narrowed in terms of the volume, genres, and time-frame that can be manually considered. A reliable
computational approach that eiciently analyzes vast amounts of text with limited human intervention would be
an extremely useful tool to assist researchers like linguists, historians, and lexicographers. Such a tool would assist
in creating and updating linguistic resources (e.g., lexicons, vocabularies, and thesauri), while also enhancing our
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understanding of historical and societal change relected in language. For instance, consider the actual attention
to topics like łpolitically correctž: the word retarded has undergone semantic change over time, originally
describing a neutral medical condition, but later acquiring ofensive connotations when used as a derogatory
insult [52, 101].

Modeling lexical semantic change through LLMs represents a new opportunity to scale up and automate the
analysis as much as possible. Notably, distributional word representations (i.e., word embeddings) generated by
LLMs emerged as an efective solution to capture the possible change over time in the meanings of a target word.
Any embedding-based approach relies on the well-known distributional hypothesis in linguistics: łYou shall know
a word by the company it keepsž [39] and the foundational premise is that words (and word occurrences) that
have similar meanings are encoded closely each other in the embedding space [26, 44, 96].

The initial excitement for word embeddings prompted researchers and practitioners to model lexical semantic
change by using static Language Models (LMs) [130]. These models have been widely adopted and the main
approaches have been reviewed in three survey papers [74, 131, 132]. Typically, approaches based on static LMs
encode a word into a single semantic embedding, which is then used to detect change in the dominant sense (i.e.,
word meaning) of the word, without considering its potential additional subordinate senses. However, subordinate
senses can change on their own, regardless of their dominant sense. For example, considering the word rock, the
music meaning evolved over time to encompass both music and a particular lifestyle, while the stone meaning
remained unchanged [54]. Thus, the recent introduction of more advanced Transformer architectures [137]
has established the use of LLMs as the preferred tool for modeling semantic change. In contrast with static
LMs, approaches based on LLMs typically rely on diferent word representations according to the context in
which a word occurs. For instance, diferent semantic vectors are generated when the word rock in the input
sequence is used with the music connotation or with the stone meaning. This capability facilitates the modeling
of linguistic colexiication phenomena such as homonymy [124] and polysemy [42]. However, although more
and more approaches based on LLMs are emerging, a classiication framework and a corresponding survey of
existing approaches are still missing.

In this article, we survey the main approaches based on LLMs to model the linguistic phenomenon of lexical
semantic change through a corresponding NLP task called Lexical Semantic Change - LSC (also known as Semantic
Shift Detection). To this end, we propose a classiication framework based on three dimensions of analysis, namely
meaning representation, time-awareness, and learning modality, that allows to efectively describe the featuring
properties of both form- and sense-based approaches in which solutions are typically distinguished [45]. We also
review assessment methods and metrics used by diferent approaches to measure and quantify the change of a
word over a speciic time interval. As a further contribution of our survey, the approaches to LSC are compared
based on their performance against various reference benchmarks. This comparison aims to discuss the related
performance issues and potential limitations.

The goal of our survey is to highlight the computational modeling of LSC and focus on LLMs, rather than the
linguistic perspective and theory behind them.

The article is organized as follows. Section 2 presents the LSC problem with the related worklow and
formalization. The proposed framework for approach classiication is illustrated in Section 3. The classiication
of state-of-the-art approaches is discussed in Section 4. A comparative analysis of approach performance is
provided in Section 5; issues related to scalability, interpretability, and robustness of the approaches are discussed
in Section 6. Finally, in Section 7, we outline the open challenges and we give our concluding remarks.
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2 Problem statement

Consider a diachronic document corpus C =

⋃�
�=1�� where �� denotes a set of documents (e.g., sentences,

paragraphs) at time �� ; and a set of target words W occurring in the corpus C across the entire time span
[�1, . . . , ��].
Modeling lexical semantic change typically involves:

• word sense induction: modeling the meaning(s) of each word� ∈ W in each time period �1, �2, . . . , �� ;
• semantic change detection: identifying the words� ∈ W that change in meaning across all the contiguous
time intervals, namely the pairs of time periods ⟨�1, �2⟩, ⟨�2, �3⟩, . . . , ⟨��−1, ��⟩.

For the sake of readability, in the following, we consider the LSC problem on a corpus C = �1 ∪ �2 and the
change assessment of a given target word� ∈ W on a single time interval ⟨�1, �2⟩, from time period �1 to time
period �2. This simpliication enables to review the current state-of-the-art in a clear and concise fashion, while
being easily extendable to the general case. As a matter of fact, the extension to the whole set of target wordsW
as well as to all the contiguous time intervals can be obtained by re-executing a considered approach as many
times as needed [45].

Diferent formulations of the problem are possibly depending on various research and assessment questions.
The most popular are:

1. Graded Change Detection: the goal is to quantify the extent to which a word � change in meaning
between �1 and �2 [125].

2. Binary Change Detection: the goal is to classify a word� as łstablež (without lost or gained senses) or
łchangedž (with lost or gained senses) between �1 and �2 [125].

3. Sense Gain Detection: the goal is to recognize whether a word� gained meanings or not between �1

and �2 [143].
4. Sense Loss Detection: the goal is to recognize whether a word� lost meanings or not between �1 and
�2 [143].

2.1 The general workflow

The approaches to LSC typically follow the four-step worklow presented in Figure 1. The initial extraction stage
aims to select all the documents in the corpora containing occurrences (i.e., one or more) of the target word. We
refer to these documents as word usages. The second representation stage has the goal to generate a semantic
representation for each word occurrence. An optional aggregation stage can be then enforced to group multiple
word representations into a single one for detecting similar usages and/or reducing the overall computational
complexity. The inal assessment stage consists in the application of a semantic measure to evaluate how the
meanings of the word changed over time.

word usage

extraction
−→

word occurrence

representation
−→

word vector

aggregation
−→

semantic change

assessment

Fig. 1. A general workflow for modeling lexical semantic change through LLMs.

Word usage extraction. Consider the corpora �1 and �2 and the target word� . The goal of this stage is to
extract all the contextual usages of� from �1 and �2. As the word meanings are inluenced by morphology and
syntax [141], the extraction has to capture the occurrences of� in all its linguistic forms (e.g., singular/plural and
gender forms, diferent verb tenses). For instance, a word may change in meaning only in one of its forms. An
example is the Italian word lucciola that was historically used with a euphemism for prostitute, a meaning
that has now become obsolete. Nonetheless, the plural form lucciole has consistently retained the more stable
sense of fireflies [77].
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Word occurrence representation. The goal of this stage is to generate a word representation for each
occurrence of the word� in �1 and �2. Ideally, the word representations of� should be similar for semantically
similar word occurrences (i.e., usages) across diferent documents. A LLM is used to represent each word
occurrence according to its context. Diferent types of representations can be used. Possible options are:

• word embeddings: a semantic vector in a multi-dimensional space that is directly generated by the
Encoder of LLMs, such as BERT [33], RoBERTa [87], or ELMo [108].

• lexical substitutes: a bag of words that is generated by a Masked LLM such as BERT and RoBERTa
to substitute a speciic occurrence of � in a document [20]. These substitutes are supposed to replace a
word without introducing grammatical errors or signiicantly changing its meaning. For example, suitable
substitutes for the word fly in the sentence a noisy fly sat on my shoulder are bug, beetle,
or butterfly; while suitable substitutes in the sentence we will fly to London are walk, run, or
bike [70]. Alternatively, Causal LLMs such as GPT [18] and LLaMA [135] can be prompted to generate
the substitutes [8, 103]. A word embedding vector for each occurrence of � can be computed over
the substitutes (i.e., bag-of-substitutes) using measures like like Term Frequency-Inverse Document
Frequency (Tf-Idf).

• sense deinitions: a descriptive interpretation that is generated by a Causal LLM to represent the occurrence
of the word� in a particular document [47]. For example, an occurrence of the word bank may correspond
to the deinition of a financial institution, while another occurrence may correspond to the edge

of a river. Alternatively, when available, lexical resources like WordNet [98] can be leveraged to obtain
sense deinitions. Sense deinitions can be further processed by the Encoder of LLMs to generate less noisy
sense embedding representations [69], or by Natural Language Generation (NLG) metrics such as BLEU,
NIST, ROUGE-L, METEOR, or MoverScore [59].

Currently, contextualized word embeddings are the most widespread tool in LSC [79], with very few
approaches using the other representations. Thus, we will use word embeddings as a reference for word occurrence
representation. In the following, we denote the representation of the word� in the �-th document of a corpus � �
as � �,� , where � ∈ 1, 2. Then, the representation of the word � in a corpus � � is deined as: Φ� = {� �,1, . . . , � �,�},
with � being the cardinality of � � , namely the number of documents in � � containing � . Finally, the sets of
representation vectors generated for the word� at time �1 and �2 are denoted as Φ1 and Φ2, respectively.

Word vector aggregation. This stage is optionally executed and it has two main goals: i) to recognize when
diferent word occurrences convey a similar meaning, and ii) to reduce the number of elements to consider for
change detection. To this end, clustering and averaging techniques are proposed for aggregating the generated
word embeddings.

i) Clustering techniques are employed to group similar word embeddings in a cluster, each one loosely
denoting a speciic word meaning. In some approaches, it is assumed that the corpus is static, meaning that
all the documents in �1 and �2 are available as a whole. Then, a joint clustering operation is executed over
the embeddings of Φ1∪Φ2 (e.g. [92]). In other approaches, it is assumed that the corpus is dynamic, meaning
that documents become available at diferent time periods and a separate clustering operation is performed
over the embeddings of Φ1 and Φ2, individually (i.e., one exclusively on Φ1 and another exclusively on Φ2

embeddings). When a separate clustering is executed, the resulting clusters need to be aligned in order to
recognize similar word meanings at diferent consecutive time periods (e.g., [64]). To overcome the need for
aligning clusters, an incremental clustering operation is employed to progressively group the embedding
available at the diferent time steps (e.g. [106]). The result of clustering is a set of � clusters where the �-th
cluster is denoted as �� and it can fall into one of the following cases (see Figure 2):
ś (A): �� contains only embeddings from �1;
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Fig. 2. Possible cluster composition for modeling word senses over time (from [105]).

ś (B): �� contains a mixture of embeddings from both �1 and �2;
ś (C): �� contains only embeddings from �2.
As a result, a cluster �� = �1,� ∪ �2,� is composed by the union of two partitions �1,� and �2,� denoting the
embeddings from Φ1 and Φ2, respectively. When a joint or incremental clustering is applied, the resulting
clusters can belong to any of the above cases (i.e., A, B, and C). When a separate clustering is applied, the
resulting clusters can just belong to A and C cases, meaning that �2,� = ∅ and �1,� = ∅, respectively.

ii) Averaging techniques consist in determining a prototypical representation of the word� . As an option,
a word-prototype can be computed by averaging all its embedding. In this case, word-prototypes �1 and
�2 are created as the average embeddings of Φ1 and Φ2, respectively (e.g., [73]). As an alternative option,
averaging can be executed on top of the results of clustering. For each cluster, averaging is used to create
a prototypical representation of all the cluster elements (i.e., the centroid of the cluster). In particular,
sense-prototypes �1,� , �2,� can be created for each cluster �� as the average embedding of its cluster partitions
�1,� , �2,� , respectively (e.g., [105]).

Semantic change assessment. This stage has the goal to measure the change on the meanings of the word
� across the corpora �1 and �2 by considering the sets Φ1 and Φ2. In the literature, a number of functions are
proposed for semantic change assessment. Distinctions can be made between measures that assess the change by
considering the whole set of embedding representations Φ� , by those that exploit the prototypical representations
�� and/or �� generated during the aggregation step through clustering and/or averaging. According to [74], the
deinition of a rigorous, formal, mathematical model for representing the assessment functions used in LSC
approaches is a challenging issue. In the following, we provide a formal deinition of an abstract function � ,
with the goal of encompassing all existing assessment measures. The semantic change assessment � = � (·, ·, ·) is
deined as follows:

� : {R� } (�1+�1 ·� ) , {R� } (�2+�2 ·� ) , � → S

where � is the dimension of the word vectors in Φ1 and Φ2; �1, �2 are the number of prototypical embeddings
under consideration for�1,�2, respectively; �1, �2 are the number of vectors in Φ1 and Φ2, respectively; � ∈ {0, 1}
is a lag that allows to distinguish the approaches according to the kind of embedding used (i.e., original and/or
prototypical); � is a counting function that determines the normalized number of embeddings in the cluster
partitions �1,� and �2,� , respectively.

The counting function � is deined as:

� : {R� }�1 , {R� }�2 → R� ,R�

where � denotes the comprehensive number of � clusters obtained when a clustering operation is enforced during
the aggregation stage. If a cluster �� contains embeddings only from Φ1, then the corresponding count for�2 will
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be equal to 0, and vice versa. When the clustering operation is not enforced, each embedding is mapped to a
singleton group (i.e., � = �1 + �2).

The signature of � depends on the possible execution of an aggregation technique:

• Clustering. When the clustering operation is executed, then �1 = �2 = 0 and � = 1. This means that all the
�1 + �2 embeddings in Φ1 ∪ Φ2 are exploited for semantic change assessment (e.g., [92]).

• Averaging. When the averaging operation is executed, then �1 = �2 = 1. In some approaches, � = 0 and this
means that the function � is deined as a distance measure over prototypical representations (e.g., [91]).
In some other approaches, � = 1 and this means that � is deined as a distance measure over the original
embeddings Φ and their prototypical representations (e.g., [110]).

• Clustering + Averaging. When both clustering and averaging are performed, �1, �2 > 0 and � can be both 0
or 1 as in the previous case (e.g., [22]).

The output S, is generally deined according to the formulation of the LSC problem.

• Graded Change Detection: S = R, with � quantifying the change of� between �1 and �2.
• Binary Change Detection: S = {0, 1}, with � representing a binary score for łstablež (i.e., 0) and łchangedž
(i.e., 1), respectively.

• Sense Gain Detection: S = {0, 1}, with � representing a binary score for not-gained (i.e., 0) and gained (i.e.,
1), respectively.

• Sense Loss Detection: S = {0, 1}, with � representing a binary score for not-lost (i.e., 0) and lost (i.e., 1),
respectively.

Graded Change Detection is the most commonly considered formulation. Thus, in this survey, we focus on
approaches that address LSC considering Graded Change Detection. It is worth noting that conceptually Binary
Change Detection is not the binarization of Graded Change Detection. Indeed, even if a word does not gain/lose
meanings (i.e., łstablež word), it can be associated with a high value of � due to other forms of semantic change,
such as amelioration (change to positive connotation) and pejoration (change to negative connotation) [50].
However, in practice, Binary Change Detection is derived from Graded Change Detection by binarizing the
graded � through a threshold � (e.g., [145]). We do not address Sense Gain and Sense Loss Detection as they are
relatively novel formulations.

For the sake of clarity, a summary of the notation used throughout this article is proved in Table 1.

Notation Deinition

C Diachronic document corpus

� � Time period �-th

� Target word

� � Set of documents at time � � containing a word�

W Set of target words

� �,� Representation (i.e., embedding) of the word� in the �-th document of a corpus � �
Φ� Set of the representations of� in the corpus � �
�� �-th cluster containing the representations of the word�

� �,� Subset of representations Φ� in the cluster ��
� � Prototypical representation of� for Φ�
� �,� Prototypical representation of� for � �,�

Table 1. Summary of notation used in this article.

3 A classification framework for LSC

A consolidated and widely-accepted classiication framework of approaches is not available. A basic frame-
work is focused on the meaning representation of the words by distinguishing between form- and sense-based
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approaches [45, 112]. However, such a distinction is not universally recognized with a unique interpretation.
Sometimes, these two categories are referred as type- and token-based, where averaging and clustering are en-
forced to aggregate embeddings, respectively [80, 125]. More recently, average- and cluster-based categories have
been proposed to rename form and sense ones to highlight the method used for embedding aggregation [105].

In the following, this article proposes a comprehensive classiication framework that extends the basic distinc-
tion between form- and sense-based approaches by introducing three dimensions of analysis, namely meaning

representation, time-awareness, and learning modality (see Table 2).

Meaning representation Time-awareness Learning modality

form-based time-oblivious supervised
sense-based time-aware unsupervised

Table 2. A classification framework for modeling lexical semantic change.

Meaning representation. Borrowing the distinction proposed by [45], this dimension focuses on the meaning
representation of a word. Two categories are deined:

• form-based: the meaning representation concerns the high-level properties of the target word� , such as its
degree of polysemy or its dominant sense. When the polysemy is considered, the employed approaches do
not enforce any aggregation stage and the semantic change of� is assessed by measuring the degree of
change on the embeddings Φ1 and Φ2 (i.e., change on the degree of polysemy). When the dominant sense is
considered, all the meanings of� are collapsed into a single one on which the change is assessed. Typically,
the embeddings Φ1 and Φ2 are averaged into corresponding word prototypes �1 and �2, respectively. In
this case, the approaches focus on one meaning of� that can be considered as an approximation of the
dominant sense since, generally, it is the most frequent in the corpus, and thus the one most represented in
the word prototype. We stress that form-based approaches are not able to represent how minor meanings
compete and cooperate to change the dominant sense [58].

• sense-based: the meaning representation concerns the low-level properties of the target word � , such
as its diferent context usages (i.e., its multiple meanings). All the senses of a word � are represented
and considered in the change assessment, namely the dominant sense and the minor ones. Typically, the
embeddings Φ1 and Φ2 are aggregated into clusters, each one loosely representing a diferent meaning of
� . Sense-based approaches allow to capture the changes over the diferent meanings of � as well as to
interpret the word change (e.g., a new/existing meaning has gained/lost importance).

Time awareness. This dimension focuses on how the time information of the documents is considered by the
employed LLM. Two categories are deined:

• time-oblivious: this category is based on the assumption that a document of time � adopts linguistic patterns
that are known by the LLM and already characterize the language at the time � by its own. Thus, it is not
needed that the LLM is aware of the time in which a document is inserted in the corpus. A time-oblivious
approach is based on the contextual nature of embeddings generated by the model, which by deinition are
dependent on the context that is always time-speciic [92].

• time-aware: this category is based on the assumption that the LLM is not capable of adapting to time and
generalizing temporally since they are usually pre-trained on corpora derived from a snapshot of the web
crawled at a speciic moment in time [116]. Thus, it is needed that the LLM is aware of the time in which a
document is inserted in the corpus. As a result, a time-aware LLM encodes the time information as well as
the linguistic context of a document while generating the word representations.

Learning modality. This dimension is about the possible use of external knowledge for describing and
learning the word meanings to recognize. Two categories are deined:
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• supervised: a form of supervision is enforced to inject external knowledge to support the change assess-
ment. In addition to the text in the corpora �1 and �2, a lexicographic/manual supervision is employed.
Lexicographic supervision refers to the use of dictionaries, vocabularies, or thesauri to support word sense
induction and recognize the meaning of each word occurrence. This solution can be considered as an
alternative to aggregation by clustering for meaning identiication. Manual supervision involves using a
human-annotated dataset (e.g., Word-in-Context dataset) with gold labels for training or ine-tuning the
LLM [6].

• unsupervised: the change assessment is exclusively based on the text of the corpora �1, �2 without any
external knowledge support. As a result, the word meanings to recognize emerge from the corpora and the
change is completely assessed by exploiting unsupervised learning techniques. The use of aggregation by
clustering is an example of unsupervised learning for meaning detection.

4 Approaches to LSC

In this section, the existing approaches in literature are reviewed according to the classiication framework
discussed in Section 3. In particular, the solutions are presented in Sections 4.1 and 4.2 according to the meaning
representation of the considered target word, namely form- and sense- based approaches, respectively. Moreover,
Section 4.3 describes the so-called ensemble approaches, namely approaches that are based on a combination of
multiple form- and/or sense-based solutions.

For the sake of comparison, in each category (i.e., form, sense, ensemble), a summary table is provided to frame
the literature papers according to the classiication framework as well as to report additional descriptive features
about the following aspects:

• LLM: the large language model used (e.g., BERT);
• Training language: the language of the dataset used for training the model. The possible options are
monolingual to denote when training is executed on a single language, or multilingual when more than one
language is considered.

• Type of training: how the model is trained. Five categories are distinguished:
ś trained: the model is trained from scratch through a typical objective function(s);
ś pre-trained: the model has been pre-trained on a large dataset by other researchers, and it is directly used
as an of-the-shelf solution instead of being trained from scratch;

ś ine-tuned for domain-adaptation: the model has been pre-trained on a large dataset by other researchers,
then it is ine-tuned on new data through the same objective function;

ś ine-tuned for incremental domain-adaptation: the model is ine-tuned on the corpus of the irst time
period �1. Then, it is re-tuned separately on the corpus �2. The model at time �2 is initialized with the
weights from the model at time �1, so that both models are inherently related the one to the other;

ś ine-tuned: the model has been pre-trained on a large dataset by other researchers, then it is ine-tuned
on new data through a diferent objective function.

• Layer : the architecture’s layer(s) from which word representations are extracted;
• Layer aggregation: the type of aggregation used to synthesize the word representations extracted from
diferent layers into a single embedding;

• Clustering algorithm: the clustering algorithm used in the aggregation stage;
• Change function: the function � used to detect/assess the semantic change;
• Corpus language: the natural language of the corpus in the considered experiments of change assessment
(e.g., English, Italian, Spanish).
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Ref.
Time

awareness

Learning

modality
LLM

Training

language

Type of

training
Layer

Layer

aggregation

Clustering

algorithm

Change

function

Corpus

language

Arefyev et al.
2021

time-oblivious supervised XLM-R-large multilingual ine-tuned last - - APD Russian

Beck
2020

time-oblivious unsupervised mBERT-base multilingual pre-trained last two average K-Means CD

English,
German,
Latin,

Swedish

Martinc et al.
2020a

time-oblivious unsupervised
BERT-base,
mBERT-base

monolingual,
multilingual

domain-adaptation last four sum - CD
English,
Slovenian

Horn
2021

time-oblivious unsupervised
BERT-base,

RoBERTa-base
monolingual

domain-adaptation,
pre-trained

- - - CD English

Hofmann et al.
2021

time-aware unsupervised BERT-base monolingual ine-tuned last - - CD English

Zhou and Li
2020

time-aware unsupervised BERT-base monolingual domain-adaptation last four sum - CD

English,
German,
Latin,

Swedish

Rosin et al.
2022

time-aware unsupervised
BERT-base,
BERT-tiny

monolingual ine-tuned
all,
last,

last four
average -

CD,
TD

English,
Latin

Rosin and Radinsky
2022

time-aware unsupervised
BERT-base,
BERT-small,
BERT-tiny

monolingual ine-tuned

all,
last,

last four,
last two

average - CD
English,
German,
Latin

Kutuzov and Giulianelli
2020

time-oblivious unsupervised
BERT-base,
ELMo,

mBERT-base

monolingual,
multilingual

domain-adaptation,
incremental domain-adaptation,

pre-trained,
trained

all,
last,

last four
average -

APD,
CD,
PRT

English,
German,
Latin,

Swedish

Giulianelli et al.
2020

time-oblivious unsupervised BERT-base monolingual pre-trained all sum - APD English

Keidar et al.
2022

time-oblivious unsupervised RoBERTa-base monolingual domain-adaptation
all,
irst,
last

sum - APD English

Pömsl and Lyapin
2020

time-aware unsupervised
BERT-base,
mBERT-base

monolingual,
multilingual

ine-tuned last - - APD

English,
German,
Latin,

Swedish

Kudisov and Arefyev
2022

time-oblivious unsupervised XLM-R-large multilingual pre-trained - - - APD Spanish

Laicher et al.
2021

time-oblivious unsupervised BERT-base monolingual pre-trained

irst,
irst + last,
irst four,

last,
last four

average -
APD,

APD-OLD/NEW,
CD

English,
German,
Swedish

Wang et al.
2020

time-oblivious unsupervised mBERT-base multilingual pre-trained last - -
APD,
HD

Italian

Kutuzov
2020

time-oblivious unsupervised

BERT-base,
BERT-large,

ELMo,
mBERT-base

monolingual,
multilingual

domain-adaptation,
pre-trained

all,
last,

last four
average -

APD,
DIV,
PRT

English,
German,
Latin,

Swedish,
Russian

Ryzhova et al. time-oblivious unsupervised

ELMo,
RuBERT

Kuratov and Arkhipov
2019

multilingual
pre-trained,
trained

- - - APD Russian

Rodina et al.
2020

time-oblivious unsupervised
ELMo,
RuBERT

monolingual,
multilingual

domain-adaptation last - - PRT Russian

Liu et al.
2021

time-oblivious unsupervised

BERT-base,
LatinBERT

Bamman and J. Burns
2020

multilingual,
monolingual

domain-adaptation last four sum - CD

English,
German,
Latin,

Swedish

Giulianelli et al.
2022

time-oblivious unsupervised XLM-R-base multilingual domain-adaptation all average -
APD,
PRT

English,
German,
Italian,
Latin,

Norwegian,
Russian,
Swedish

Laicher et al.
2020

time-oblivious unsupervised mBERT-base multilingual pre-trained
all,

last four
average - APD Italian

Qiu and Yang
2022

time-oblivious unsupervised BERT-base monolingual
domain-adaptation

pre-trained
last four sum - CD English

Periti et al.
2022

time-oblivious unsupervised
BERT-base
mBERT-base

monolingual,
multilingual

pre-trained last four sum -
CD,
DIV

English,
Latin

Montariol et al.
2021

time-oblivious unsupervised
BERT-base
mBERT-base

monolingual,
multilingual

domain-adaptation last four sum - CD

English,
German,
Latin,

Swedish

Table 3. Summary view of form-based approaches. Missing information is denoted with a dash.
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4.1 Form-based approaches

According to Table 3, we note that most form-based approaches are time-oblivious. A few time-aware approaches
have been recently appeared and they are all characterized by the adoption of a speciic ine-tuning operation to
inject time information into the model. All the current work leverage unsupervised learning modalities with the
exception of [6]. The aggregation stage is mostly based on averaging, while clustering is only enforced in [12]
where a cluster represents the dominant sense of the word � . In particular, in [12], a word is considered as
changing when clustering the embeddings Φ1 and Φ2 via K-means with � = 2 generates two groups where one of
the two clusters contains at least 90% of the embeddings from one corpus only (i.e., �1 or �2).
In form-based approaches, the following change functions are proposed for measuring the semantic change � .

Cosine distance (CD). The change � is measured as the cosine distance (CD) between the word prototypes
�1, �2 as follows:

�� (�1, �2) = 1 −�� (�1, �2) (1)

where �� is the cosine similarity between the prototypes. Intuitively, the greater the �� (�1, �2), the greater the
change in the dominant sense of� .

Typically, the prototypes �1 and �2 are determined through aggregation by averaging over Φ1 and Φ2, respec-
tively (e.g., [91]). As a diference, in [57], the prototype embedding �2 at time step � = 2 is computed by updating
the prototype embedding �1 at time step � = 1 through a weighted running average (e.g., [38]).
In [91], the CD metric is employed in a multilingual experiment where the change is measured across a

diachronic corpus with texts of diferent languages. This is the only example of cross-language change detection.
CD is also used in time-aware approaches. The integration of extra-linguistic information into word embed-

dings, such as time and social space, has been proposed in previous work based on static LMs [121, 144]. Recently,
this integration has been also applied to contextualized embeddings [60, 119]. In [56], a pre-trained LLM is
ine-tuned to encapsulate time and social space in the generated embeddings. Then, the change � is assessed
by computing the CD between embeddings generated by the original pre-trained model and the embeddings
generated by the time-aware, ine-tuned model. In particular, in [145], a temporal referencing mechanism is
adopted to encode time-awareness into a pre-trained model. Temporal referencing is a pre-processing step of
the documents that tags each occurrence of� in �1 and �2 with a special marker denoting the corpus/time in
which it appears [34, 37]. The embeddings of a tagged word are learned by ine-tuning the LLM for domain-
adaptation. In this case, � is assessed by computing the CD between � [1] and � [2] , where [�] denotes � with
the temporal marker �� . Similarly to [145], a time-aware approach is proposed in [116] where a time marker
is added to documents instead of words and the LLM is ine-tuned to predict the injected time information
(i.e., time masking). This way, there is no need to add a tag for each target word and its various forms (e.g.,
singular, plural), thereby avoiding the inclusion of additional new tokens in the LLM’s vocabulary. As an alterna-
tive, in [117], a temporal attentionmechanism is adopted to generate the embeddings Φ1 and Φ2 for calculating CD.

Inverted similarity over word prototype (PRT). This measure is proposed as an alternative to CD for
improving the efectiveness of the change detection [73]. The inverted similarity over word prototypes (PRT)
measure is deined as:

��� (�1, �2) =
1

�� (�1, �2)
. (2)

Time-dif (TD). This measure is designed for time-aware approaches and it works on analyzing the change
of polysemy of a word along time. It is based on the model capability to predict the time of a document and it
calculates the change � by considering the probability distribution of the predicted times [116]. Intuitively, a
uniform distribution means that the association document-time is not strong enough to clearly entails a change.
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Instead, a non-uniform distribution means that there is an evidence to predict the time of a document. Consider a
document � , let � � (�) be the probability of � to belong to the time � � . The function time dif (TD) is deined as the
average diference of the predicted time probabilities:

�� (�1,�2) =
1

|�1 ∪�2 |

︁

�1∈�1,�2∈�2

|�1 (�1) − �2 (�2) | . (3)

The experiments conducted in [116] demonstrate that TD outperforms CD in short-term semantic change when
their performance is compared on the task of Graded Change Detection across various benchmarks. On the
contrary, CD outperforms TD over long-term semantic change. [116] argue that TD is less efective on long-term
periods since major diferences in writing style emerge and the prediction of document-time associations is less
reliable.

Average pairwise distance (APD). This measure exploits the variance of the contextualized representations
Φ1, Φ2 to compute the semantic change assessment (i.e., variance on the word polysemy). As a diference with the
previous measures, APD directly works on word embeddings without requiring any aggregation stage, namely
clustering nor averaging. The average pairwise distance (APD) is deined as follows:

��� (Φ1,Φ2) =
1

|Φ2 | |Φ2 |
·

︁

�1,� ∈ Φ1, �2,� ∈ Φ2

� (�1,� , �2,� ) , (4)

where � is an arbitrary distance measure (e.g., cosine distance, euclidean distance, canberra distance). According
to the experiments performed in [45], APD better performs when the euclidean distance is employed as � . In [67],
APD is used over the embeddings Φ1 and Φ2 by applying a dimensionality reduction through the Principal
Component Analysis (PCA). In [67], experiments on both slang and non-slang words are performed through
causal analysis to study how distributional factors (e.g., polysemy, frequency shift) inluence the change � . The
results show that slang words experience fewer semantic change than non-slang words.

In [70], lexical substitutes are used to assess � . A set of lexical substitutes is generated by leveraging a masked
LLM (e.g., XLM-R) and word representations Φ1, and Φ2 are computed as bag-of-substitutes. Then, APD is inally
computed over Φ1, and Φ2 to assess � .

APD is also used in a time-aware approach described in [110], where a pre-trained BERT model is ine-tuned
to predict the time period of a sentence. APD is inally used to measure the change between the embeddings
extracted from the ine-tuned LLM.

In [6], APD is employed to measure the change � over the embeddings Φ1 and Φ2 extracted from a supervised
Word-in-Context model (WiC, [109]). This LLM is trained to reproduce the behavior of human annotators when
they are asked to evaluate the similarity of the meaning of a word� in a pair of given sentences from �1 and �2,
respectively. The embeddings Φ1 and Φ2 are extracted from the trained WiC model for calculating the inal APD
measure.

Average of average inner distances (APD-OLD/NEW). The APD-OLD/NEW measure is presented in [81]
as an extension of APD and it estimates the change � as the average degree of polysemy of� in the corpora �1

and �2, respectively. The average of average inner distances (APD-OLD/NEW) is deined as:

���-���/��� (Φ1,Φ2) =
��� (Φ1) +��� (Φ2)

2
. (5)

where AID is the average inner distance and it measures the degree of polysemy of� in a speciic time frame by
relying on the APD measure, namely ��� (Φ1) = ��� (Φ1,Φ1) and ��� (Φ2) = ��� (Φ2,Φ2), respectively.

Hausdorf distance (HD). The change � is measured as the Hausdorf distance (HD) between the word
embeddings Φ1 and Φ2. Similarly to APD, HD directly works on word embeddings without requiring any
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aggregation stage. HD relies on the euclidean distance � to measure the diference between the embeddings
of � in �1 and �2 and it returns the greatest of all the distances � from one embedding �1 ∈ Φ1 to the closest
embedding �2 ∈ Φ2, or vice-versa. The HD measure is deined as follows:

�� (Φ1,Φ2) = max

(

sup
�1∈Φ1

inf
�2∈Φ2

� (�1, �2), sup
�2∈Φ2

inf
�1∈Φ1

� (�2, �1)

)

. (6)

The experiments performed in [138] show that HD is sensitive to outliers since it is based on inimum and
supremum, thus an outlier embedding may largely afect the inal � value.

Diference between token embedding diversities (DIV). Similar to APD, this measure assesses the change
� by exploiting the variance of the contextualized representation Φ1 and Φ2. As a diference with APD, the
diference between token embedding diversities (DIV) leverages a coeicient of variation calculated as the average
of the cosine distances � between the embeddings Φ1 and Φ2, and their prototypical embeddings �1 and �2,
respectively [72]. The intuition is that when � is used in just one sense, its embeddings tend to be close to
each other yielding a low coeicient of variation. On the opposite, when � is used many diferent senses, its
embeddings are distant to each other yielding to a high coeicient of variation. DIV is deined as the absolute
diference between the coeicient of variation in �1 and �2:

��� (Φ1,Φ2) =

�

�

�

�

∑

�1∈Φ1
� (�1, �1)

|Φ1 |
−

∑

�2∈Φ2
� (�2, �2)

|Φ2 |

�

�

�

�

(7)

In [72], the experiments show that when the coeicient of variation is low, the prototypical embeddings �1 and
�2 successfully represent the meanings of the given word� . On the opposite, when the coeicient of variation is
high, the prototypical embeddings �1 and �2 do not provide a relevant representation of the� meanings.

4.2 Sense-based approaches

According to Table 4, we note that all the sense-based approaches are time-oblivious and that ine-tuning is
sometimes adopted, but mainly for domain-adaptation purposes. Most papers leverage unsupervised learning
modalities. Only a few exceptions employ a lexicographic supervision (i.e., [58, 113, 114]). As a diference with
form-based, sense-based approaches usually enforce clustering in the aggregation stage. The aggregation by
averaging is only exploited in [58, 100, 105], where sense prototypes are computed on top of the results of a
clustering operation.
When clustering is adopted, the function � that calculates the change � can be directly deined over the

embeddings Φ1 and Φ2. As an alternative, the function � can be deined over the distribution of the embeddings
in the resulting clusters (i.e., cluster distribution). In this case, as a result of the clustering operation, a counting
function � is used to determine two cluster distributions �1 and �2 that represent the normalized number of
embeddings in the cluster partitions �1,� and �2,� , respectively (see Section 2). The �-th value � �,� in � � (with

� ∈ {1, 2}) represents the number of embeddings of � �,� in the �-th cluster, namely: � �,� =
|� �,� |

|Φ� |
. Finally, the

function � is deined as a compound function � = � ◦ � , where the result of the � function is exploited by a
change function � which works on the cluster distributions �1 and �2.

In sense-based approaches, the following change functions are proposed for measuring the semantic change � .

Maximum novelty score (MNS). This measure exploits the cluster distributions �1 and �2 by leveraging
the idea that the higher is the ratio between the number of embeddings Φ1 and Φ2 in a cluster, the higher is the
semantic change of the considered word� . The maximum novelty score (MNS) is deined as:

��� (�1, �2) = max{�� (�1,1, �2,1), ..., �� (�1,� , �2,� )} , (8)
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Ref.
Time

awareness

Learning

modality
LLM

Training

language

Type of

training
Layer

Layer

aggregation

Clustering

algorithm

Change

function

Corpus

language

Hu et al.
2019

time-oblivious supervised BERT-base monolingual pre-trained last - - MNS English

Rachinskiy and Arefyev
2021

time-oblivious supervised XLM-R-base multilingual
ine-tuned,
pre-trained

- - - APD Russian

Rachinskiy and Arefyev
2022

time-oblivious supervised XLM-R-base multilingual
ine-tuned,
pre-trained

last - -
APD,
JSD

Spanish

Periti et al.
2022

time-oblivious unsupervised
BERT-base,
mBERT-base

monolingual,
multilingual

pre-trained last four sum
AP,
APP,
IAPNA

JSD,
PDIS,
PDIV

English,
Latin

Montariol et al.
2021

time-oblivious unsupervised
BERT-base,
mBERT-base

monolingual,
multilingual

domain-adaptation last four sum
K-Means,

AP
JSD,
WD

English,
German,
Latin,

Swedish

Rodina et al.
2020

time-oblivious unsupervised
mBERT-base,

ELMo
monolingual,
multilingual

domain-adaptation last -
K-Means,

AP
JSD
MS

Russian

Kanjirangat et al.
2020

time-oblivious unsupervised mBERT-base multilingual pre-trained last four concatenation K-Means
CSC,
JSD

English,
German,
Latin,

Swedish

Giulianelli et al.
2020

time-oblivious unsupervised BERT-base monolingual pre-trained all sum K-Means
ED,
JSD

English

Arefyev and Zhikov
2020

time-oblivious unsupervised XLM-R-base multilingual domain-adaptation - - AGG CDCD

English,
German,
Latin,

Swedish

Kashleva et al.
2022

time-oblivious unsupervised BERT-base monolingual domain-adaptation all sum K-Means APDP Spanish

Martinc et al.
2020c

time-oblivious unsupervised
BERT-base,
mBERT-base

monolingual,
multilingual

domain-adaptation last four sum
K-Means,

AP
JSD

English,
German,
Latin,

Swedish

Kutuzov and Giulianelli
2020

time-oblivious unsupervised
BERT-base,
ELMo,

mBERT-base

monolingual,
multilingual

domain-adaptation,
incremental domain-adaptation,

pre-trained

all,
last,

last four
average AP JSD

English,
German,
Latin,

Swedish

Giulianelli et al.
2022

time-oblivious unsupervised XLM-R-base multilingual domain-adaptation all average AP JSD

English,
German,
Italian,
Latin,

Norwegian,
Russian,
Swedish

Wang et al.
2020

time-oblivious unsupervised mBERT-base multilingual domain-adaptation last -
GMMs,
K-Means

JSD Italian

Keidar et al.
2022

time-oblivious unsupervised RoBERTa-base monolingual domain-adaptation
all,
irst,
last

sum
AP,

K-Means,
GMMs

ED,
JSD

English

Karnysheva and Schwarz
2020

time-oblivious unsupervised
ELMo,
mELMo

monolingual,
multilingual

pre-trained all -
K-Means,
DBSCAN

JSD

English,
German,
Latin,

Swedish

Cuba Gyllensten et al.
2020

time-oblivious unsupervised XLM-R-base multilingual pre-trained last - K-Means JSD

English,
German,
Latin,

Swedish

Rother et al.
2020

time-oblivious unsupervised
mBERT-base,
XLM-R-base

multilingual pre-tuned last -

BIRCH,
DBSCAN,
GMMs,

HDBSCAN

JSD

English,
German,
Latin,

Swedish

Table 4. Summary view of sense-based approaches. Missing information is denoted with a dash.

where �� (�1,� , �2,� ) = �1,�/�2,� is the novelty score proposed in [28], and � is the number of clusters produced as a
result of the aggregation stage.

In [58], MNS is employed as a change measure in a supervised learning approach. In particular, a lexicographic
supervision (i.e., the Oxford English dictionary) is employed to provide the meanings of the target word� . Each
word occurrence in Φ1 and Φ2 is associated with the closest meaning of the dictionary according to the cosine
distance. As a result, for each word/dictionary meaning, a cluster of word embeddings is deined and MNS is
exploited to calculate the overall change.
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Maximum square (MS). This measure is an alternative to MNS to assess the change of � . The intuition of
MS is that slight changes in cluster distributions �1 and �2 may occur due to noise and do not represent a real
semantic change [115]. The maximum square (MS) aims at identifying strong changes in the cluster distributions.
As a diference with MNS, the square diference between �1,� and �2,� is used to capture the degree of change
instead of the novelty score (NS):

�� (�1, �2) = max
�

(

�1,� − �2,�
)2

(9)

Jensen-Shannon divergence (JSD). This measure extends the Kullback-Leibler (KL) divergence, which
calculates how one probability distribution is diferent from another. The Jensen-Shannon divergence (JSD)
calculates the change � as the symmetrical KL score of the cluster distributions �1 from �2, namely:

��� (�1, �2) =
1

2
(��(�1 | |�) + ��(�2 | |�)) , (10)

where KL is the Kullback-Leibler divergence and� = (�1 + �2)/2.
JSD is also used in approaches where aggregation by clustering is performed separately over the embeddings

Φ1 and Φ2 [64]. As a result, the clusters need to be aligned to determine the distributions �1 and �2 before the
JSD calculation. As a diference with [64], an evolutionary clustering algorithm is employed in [105] to apply the
JSD measure without requiring any alignment step over the resulting clusters.

As a inal remark, JSD can be employed to measure the change � over more than two time periods. However,
the experiments in [45] show that the JSD efectiveness over a single time period outperforms the version over
more time periods since JSD is insensitive to the order of the temporal intervals.

Coeicient of semantic change (CSC). This measures is proposed as an alternative to JSD where the
diference over the weighted number of elements in �1,� and �2,� for each cluster � is employed to replace KL in
measuring the change [64]. The coeicient of semantic change (CSC) is deined as follows:

��� (�1, �2) =
1

�1 · �2

�︁

�=1

|�2 · �1,� − �1 · �2,� | , (11)

where � � =
∑�
�=1 � �,� is the weight of each cluster distribution and � is the number of clusters.

Cosine distance between cluster distributions (CDCD). As a further alternative of JSD, this measure
assesses the change � by considering the cluster distributions �1 and �2 as vectors and by applying the cosine
distance over them to assess the semantic change � . The cosine distance between cluster distributions (CDCD) is
deined as follows:

���� (�1, �2) = 1 −
�1 · �2

∥�1∥ × ∥�2∥
(12)

In [7], CDCD is calculated between the cluster distributions �1 and �2 obtained by enforcing clustering over
bag-of-substitutes (see the description of [7] in Section 4.1).

Entropy diference (ED). This measure is based on the idea that the higher is the uncertainty in the inter-
pretation of a word occurrence due to the � polysemy in �1 and �2, the higher is the semantic change � . The
intuition is that high values of ED are associated with the broadening of a word’s interpretation, while negative
values indicate a narrowing interpretation [45]. The entropy diference (ED) is deined as follows:

�� (�1, �2) = � (�1) − � (�2) , (13)
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where � (� � ) is the degree of polysemy of� in the corpus � � , which is calculated as the normalized entropy of its
cluster distribution � � :

� (� � ) = log�

(

�
∏

�=1

� �,�
−� �,�

)

.

As shown in [45], ED is not capable of properly assessing � when new usage types of� emerge, while old ones
become obsolescent at the same time, since it may lead to no entropy reduction.

Cosine distance between semantic prototypes (PDIS). This measure is presented in [105] as an extension
of the CD measure adopted by form-oriented approaches. The idea of PDIS is that the aggregation by averaging
over cluster prototypes can be employed to produce summary descriptions of the cluster contents (i.e., semantic
prototypes). The cosine distance between semantic prototypes (PDIS) is deined as the CD between �̄1, �̄2, that is:

���� (�̄1, �̄2) = 1 −
�̄1 · �̄2

∥�̄1∥ × ∥�̄2∥
(14)

where �̄1 and �̄2 are semantic prototypes deined as the average embeddings of all the sense prototypes �1,� and
�2,� , respectively.

Diference between prototype embedding diversities (PDIV). This measure is presented in [105] as an
extension of the DIV measure adopted by form-oriented approaches. PDIV leverages the same intuition of PDIS,
namely the semantic prototypes can be employed to calculate the coeicient of ambiguity of� by measuring
the diference between a semantic prototype �̄ � and each sense prototype � �,� . The diference between prototype
embedding diversities (PDIV) is deined as the absolute diference between these ambiguity coeicients:

���� (Ψ1,Ψ2) =

�

�

�

�

∑

�1,� ∈Ψ1
� (�1,� , �̄1)

|Ψ1 |
−

∑

�2,� ∈Ψ2
� (�2,� , �̄2)

|Ψ2 |

�

�

�

�

, (15)

where Ψ1 and Ψ2 denote the set of sense prototypes of �1,� and �2,� , respectively.

Average pairwise distance (APD). In addition to form-based approaches (see Section 4.1), the APD measure
is exploited to assess � also in sense-based approaches. In [113, 114], APD is applied to the contextualized
embeddings Φ1 and Φ2 extracted from a ine-tuned XLM-R model. In particular, an English corpus is used to
ine-tune the pre-trained LLM to select the most appropriate WordNet’s deinition for each word occurrence [14].
As a result of the ine-tuning, both WordNet’s deinitions and word occurrences are embedded in the same
vector space and the meaning of any word occurrence can be induced by selecting the closest deinition in the
vector space. In [113], the zero-shot, cross-lingual transferability property of XLM-R is exploited to obtain word
representations for Russian language and APD is inally applied [23, 27]. [113] claim that the approach is useful
to overstep the lack of lexicographic supervision for low-resource languages and that most concept deinitions
in English also hold in other languages, such as Russian. However, this claim is not completely satisied, since
some words can drastically change their meaning across languages. For example, the Russian word łпионерž (i.e.,
pioneer, scout) is strongly connected to the Communist ideology in the Soviet Period, but it isn’t in the English
language.

Average pairwise distance between sense prototypes (APDP). This measure is an extension of APD and
it considers all the pairs of sense prototypes �1,� and �2,� instead of all the original embeddings in Φ1 and Φ2 [66].
The average pairwise distance between sense prototypes (APDP) is deined as:

��� (Ψ1,Ψ2) =
1

|Ψ2 | |Ψ2 |
·

︁

�1,� ∈Ψ1, �2,� ∈Ψ2

� (�1,� , �2,� ) (16)
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Wassertein distance (WD). This measure models the change assessment as an optimal transport problem and
it is exploited as an alternative to cluster alignment when aggregation by clustering is performed separately over
the embeddings Φ1 and Φ2 [100]. WD quantiies the efort of re-coniguring the cluster distribution of �1 into �2,
namely minimising the cost of moving one unit of mass (i.e., a sense prototype) from Ψ1 to Ψ2. TheWassertein
distance (WD) is deined as:

�� (�1, �2) = min
�

�1︁

�

�2︁

�

�� (�1,� , �2, � ) ��1,�→�2, � (17)

such that: ��1,�→�2, � ≥ 0
︁

�

��1,�→�2, � = �1

︁

�

��1,�→�2, � = �2

where all ��1,�→�2, � represents the (unknown) efort required to reconigure the mass distribution �1 into �2; �1 and
�2 are the number of clusters obtained by clustering Φ1 and Φ2, respectively; �� is the cosine distance computed
over the sense prototypes �1,� ∈ Ψ1 and �2, � ∈ Ψ2 [17].

4.3 Ensemble-based approaches

In this section, we review the approaches that rely on an ensemble mechanism, namely the combination of two or
more assessment functions to determine the semantic change score. Ensembling can mean that more than one
form- and/or sense-based measure is adopted in a given approach. Ensembling can also mean that a disciplined
use of both static and large LMs is used. A inal semantic change score is then returned by the whole ensemble
process.

According to Table 5, we note that all the ensemble approaches are time-oblivious with the exception of [110]
and [117]. We also note that unsupervised learning modalities are adopted with the exception of [113]. As a
further remark, most of the ensemble solutions exploit LLMs trained over diferent languages.
Some ensemble approaches combine form-based and sense-based measures to improve the quality of results.

On the one hand, form-based measures are exploited to better capture the dominant sense of the target word� .
On the other hand, sense-based measures are exploited to represent all the meanings of� , including the minor
ones. The combination of CD (see form-based approaches in Section 4.1) and JSD (see sense-based approaches in
Section 4.2) is proposed in [93]. As a further ensemble experiment, the results of combining APD, HD, and JSD are
discussed in [138]. The APD measure is also considered in [113], where multiple change scores are calculated by
using diferent distance metrics (e.g., Manatthan distance, CD, euclidean distance) and these scores are exploited
to train a regression model as an ensemble.
Ensemble approaches based on two form-based measures are also proposed. For instance, in [46], the inal

semantic change � is obtained by averaging APD and PRT scores. This is motivated by experimental results where
sometimes APD outperforms PRT, while some other times PRT outperforms APD [73].
Some other ensemble approaches are based on the idea to combine static and contextualized embeddings.

The intuition is that static embeddings can capture the dominant sense of the target word� , better than form-
based, contextualized embeddings. In [110, 134], the semantic change � is assessed by leveraging both static and
contextualized embeddings. In particular, � is determined by the linear combination of the scores obtained by two
approaches: i) the APDmeasure over contextualized embeddings (see form-based approaches in Section 4.1); ii) the
CD measure over static embeddings aligned according to the approach described in [53]. Similarly, in [93], instead
of directly using the APD measure, JSD is exploited over clusters of contextualized embeddings (see sense-based
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Ref.
Time

awareness

Learning

modality

Language

model

Training

language

Type of

training
Layer

Layer

aggregation

Clustering

algorithm

Change

function

Corpus

language

Pömsl and Lyapin
2020

time-aware unsupervised
BERT-base,
mBERT-base

monolingual,
multilingual

ine-tuned last - - APD

English,
German,
Latin,

Swedish

Teodorescu et al.
2022

time-oblivious unsupervised XLM-large multilingual trained last four sum - APD Spanish

Martinc et al.
2020c

time-oblivious unsupervised
BERT-base,
mBERT-base

monolingual,
multilingual

domain-adaptation last four sum AP
CD,
JSD

English,
German,
Latin,

Swedish

Wang et al.
2020

time-oblivious unsupervised mBERT-base multilingual pre-trained last -
GMMs,
K-Means

APD,
HD,
JSD

Italian

Giulianelli et al.
2022

time-oblivious unsupervised XLM-R-base multilingual domain-adaptation all average -
APD,
PRT

English,
German,
Italian,
Latin,

Norwegian,
Russian,
Swedish

Ryzhova et al.
2021

time-oblivious unsupervised
ELMo,
RuBERT

monolingual,
multilingual

pre-trained
trained

- - - APD Russian

Kutuzov et al.
2022b

time-oblivious unsupervised
BERT-base,

ELMo
monolingual,
multilingual

domain adaptation last - -
APD,
PRT

English,
German,
Latin,

Swedish

Rachinskiy and Arefyev
2021

time-oblivious supervised XLM-R-base multilingual
ine-tuned,
pre-trained

- - - APD Russian

Rosin and Radinsky
2022

time-aware unsupervised BERT-base monolingual ine-tuned - - - CD
English,
Latin,
German

Table 5. Summary view of ensemble approaches. Missing information is denoted with a dash.

approaches in Section 4.2). As a further diference, the scores obtained by static and contextualized approaches
are combined by multiplication. The intuition is that, since the score distributions of the two approaches are
unknown, multiplication prevents an approach from contributing more than the other one in the inal score.

Approaches can be also combined with grammatical proiles under the intuition that grammatical changes are
slow and gradual, while lexical contexts can change very quickly [46, 77]. Grammatical proile vectors ��1 and
��2 are associated with the times �1 and �2, respectively, to represent morphological and syntactical features of
the considered language in the time period. In [122], the contextualized embeddings of the word� occurrences
are combined with the grammatical vectors. A linear regression model with regularization is trained by using as
features the cosine similarities over Φ1 and Φ2, and over the grammatical vectors ��1 and ��2.

As a further ensemble approach, the combination of diferent time-aware techniques such as temporal attention
and time masking was tested by [117] in order to better incorporate time into word embeddings.

4.4 Discussion

According to Section 4.1, 4.2, and 4.3, we note that form-based approaches are more popular than sense-based
ones. Most papers are characterized by time-oblivious approaches and only a few time-aware approaches have
recently appeared (e.g., [117]). All approaches leverage unsupervised learning modalities with few exceptions
(e.g., [58]). We argue that the motivation is due to the recent introduction of a reference evaluation framework for
semantic change assessment proposed at SemEval-2020 Shared Task 1, where participants were asked to adopt
an unsupervised coniguration [125].
All papers are featured by contextualized word embeddings extracted from BERT-like models. Regardless of

their version (i.e., tiny, small, base, large), BERT and XLM-R are the most frequently used LLMs, and only a few
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experiments rely on ELMo and RoBERTa. As a matter of fact, the size of data needed to train or ine-tune an
XLM-R model is several orders of magnitude greater than BERT. Moreover, even if less frequently employed
than BERT, ELMo seems to be promising for LSC and outperform BERT, while being much faster in training
and inference [73]. As a further interesting remark, the use of static document embeddings extracted from a
Doc2Vec[84] model has been proposed to provide pseudo-contextualized word embeddings as an alternative to
BERT [105].

Monolingual and multilingual LLMs are both popular. The BERT models are the most frequently used mono-
lingual models. XLM-R models are generally preferred to mBERT (i.e., multilingual BERT) models, since the
former are trained on a larger amount of data and languages, thus the intuition is that they can better encode the
language usages. Multilingual models are used both in multilingual settings, where corpora of diferent languages
are considered (e.g., [91]), and monolingual settings, where just corpora of one language are given (e.g., in [46]).
In a monolingual setting, the use of a multilingual model is motivated by two reasons: i) a model pre-trained on a
speciic language is not available (e.g., [73]), ii) multilingual models are employed to exploit their cross-lingual
transferability property (e.g., [113]).

Considering the type of training, most of the papers directly use pre-trained LLMs or ine-tune them for domain
adaptation. Only a few papers propose to exploit a speciic ine-tuning (e.g., [110]) or to incrementally ine-tune
a pre-trained LLM (e.g., [73]). Experiments indicate that ine-tuning a pre-trained LLM for domain adaptation
consistently boosts the quality of results when compared against pre-trained LLMs (e.g., [112]). The impact of
ine-tuning on performance is analyzed in [92], where it is shown that optimal results are achieved by ine-tuning
a pre-trained LLM for ive epochs and that, after ive epochs, performance decreases due to over-itting. However,
we argue that the ine-tuning efectiveness strictly depends on the size and domain of the considered corpora. In
many papers, a diferent number of epochs is proposed with varying results (e.g., [73]).

When a LLM is used, contextualized word embeddings are typically extracted from the last one or the last four
layers of the model. Experiments show that the semantic features of text are mainly encoded in the last four
encoder layers of BERT [33, 62]. In some papers, contextualized embeddings are extracted by aggregating the
output of the irst and the last encoded layers. In this case, the idea is to combine surface features (i.e., phrase-level
information, [62]) encoded in the irst layer with the semantic features from the last one. Only in [81], the
standalone use of lower layers of BERT is proposed. Middle layers of BERT are usually excluded since they mainly
encode syntactic features [62]. When contextualized embeddings are extracted from more than one layer, they
are generally aggregated by average or sum (e.g, [105]). As an alternative, the use of concatenation is proposed
in [64].
As a further note, when a LLM is used, some words may be split into word pieces by a subword-based

tokenization algorithm [129, 140]. In this case, word piece representations are generally synthesized into a single
word representation � �,� through averaging (e.g., [91]), or concatenating (e.g., [93]). As alternative to avoid such
problem, the pre-trained vocabulary associated with the LLM can be extended by adding some words of interest.
Then, a ine-tuning step is performed in order to learn the weights associated with the added words (e.g., [116]).

Clustering operations are typically exploited in sense-based approaches to perform Word Sense Induction [1, 4,
83, 90]. The only form-based approach that relies on clustering is presented in [12] (see Section 4.1 for details).
The clustering algorithms that are most frequently employed are K-Means and Ainity Propagation (AP). Further
considered clustering algorithms are Gaussian Mixture Models (GMMs) (e.g., [118]), agglomerative clustering
(AGG) (e.g., [7]), DBSCAN (e.g., [65]), HDBSCAN (e.g., [118]), Balanced Iterative Reducing and Clustering using
Hierarchies (BIRCH) (e.g., [118]), A-Posteriori ainity Propagation (APP) (e.g., [105]), and Incremental Ainity
Propagation based on Nearest neighbor Assignment (IAPNA) (e.g., [105]). Since K-Means, GMMs, and AGG
require to deine the number of clusters in advance, the use of a silhouette score is generally employed to
determine the optimal number of clusters [120]. As an alternative, the AP algorithm is employed to let emerge the
number of clusters without preixing it. DBSCAN is proposed due to its capability of reducing noise by specifying
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i) the minimum number of embeddings of each cluster, and ii) the maximum distance � between two embeddings
in a cluster. HDBSCAN is the hierarchical version of DBSCAN and it can manage clusters of diferent sizes. As a
diference with DBSCAN, HDBSCAN can detect noise without the � parameter. APP and IAPNA are incremental
extensions of AP, and their use is proposed for LSC when more than one time interval is considered. In [118],
diferent clustering algorithms are compared and the experiments show that i) DBSCAN is very sensitive to scale
since � is predeined, and ii) BIRCH tends to ind a lot of small clusters that are marginal with respect to word
meanings.
Considering the change functions, a detailed presentation of possible alternatives has been provided in

Sections 4.1 and 4.2. As a inal remark, we note that CD and APD are frequently exploited in form-based
approaches, while JSD is commonly employed in sense-based approaches.
Finally, as for the language of considered corpora, most papers consider the shared benchmark datasets

taken from competitive evaluation campaigns (e.g., LSCDiscovery, [143]). Common considered languages are
English, German, Latin, and Swedish that appeared in 2020 at SemEval Task 1 [125]. Russian appeared in 2021
at RuShiftEval [75, 76]. Spanish appeared in 2022 at LSCDiscovery [143]. The Italian language was introduced
in 2020 at DIACRIta [11]. The approach described in [91] represents a novel attempt to consider a diachronic
corpus containing texts of diferent languages, namely English and Slovenian.

5 Comparison of approaches on performances

In this section, we propose a comparison of the reviewed approaches based on their performance, considering
the evaluation framework adopted in LSC tasks of shared competitions. The framework is based on a reference
benchmark which contains a diachronic textual corpus in a given language. The framework is also characterized by
a test-set of target words, where each word is associated with a continuous change score (i.e., gold score), typically
calculated based on manual annotation following the established Word Usage Graph (WUG) paradigm [127].1

Diferent metrics are also deined in the framework to evaluate the performance of the approaches according to
the kind of assessment question that the task aims to address, namely Grade/Binary Change, Sense Gain/Loss (see
Section 2).

In Table 6, we compare the reviewed approaches by considering the experiments on Graded Change Detection
task performed and reported in the corresponding literature papers. In such a kind of task, the Spearman’s
correlation score is typically employed for assessing the performance of a given experiment by measuring the
correlation between the predicted change scores and the gold scores.2. The Spearman’s correlation evaluates
the monotonic relationship between the rank-order of the predicted scores and the gold ones. When multiple
experiments are discussed in a paper, the best Spearman’s correlation score obtained is reported in Table 6.
In the comparison, twelve diachronic corpora are exploited. In particular, we consider: i) the four SemEval

datasets [125] for English (SemEval English), German (SemEval German), Latin (SemEval Latin), and Swedish
(SemEval Swedish); ii) the English dataset proposed in [51] (GEMS English); iii) the English LiverpoolFC dataset
proposed in [32] (LivFC English); iv) the COHAEnglish dataset (COHA English); v) the LSCDiscovery dataset [143]
for Spanish (LSCD Spanish); vi) the DURel dataset for German (DURel German) [126]; vii) the RuShiftEval dataset
for Russian (RSE Russian) [76]; and viii) the NorDiaChange dataset for Norwegian (NOR Norwegian) [78]. In

1In the WUG annotation paradigm, human annotators provide semantic proximity judgments for pairs of word usages sampled from a

diachronic corpus spanning two time periods. Word usages and judgments are represented as nodes and edges in a weighted, diachronic

graph called diachronic WUG. This graph is then clustered with the correlation clustering algorithm [10], and the resulting clusters are

interpreted as word senses. Finally, for a given word, a ground truth score of semantic change is computed by comparing the probability

distributions of clusters across diferent time periods, e.g., a cluster with most of its usages from one time period indicates a substantial

semantic change.
2In [49], as an alternative to the Spearman’s correlation score, the Discount Cumulative Gain is proposed. However, most papers still use

Spearman’s, since it is currently employed in competitive shared tasks.
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SemEval

Englsh

SemEval

German

SemEval

Latin

SemEval

Swedish

GEMS

English

LivFC

English

COHA

English

LSCD

Spanish

DURel

German

RSE

Russian

NOR

Norwegian

Ref. �1 −�2 �1 −�2 �1 −�2 �1 −�2 �1 −�2 �1 −�2 �1 −�2 �1 −�2 �1 −�2 �1 −�2 �2 −�3 �1 −�3 �1 −�2 �2 −�3

Teodorescu et al.
2022

- - - - - - -
ensemble
APD
.573

- - - - - -

Zhou and Li
2020

form
CD
.392

form
CD
.392

form
CD
.392

form
CD
.392

- - - - - - - - - -

Montariol et al.
2021

sense
AP+WD
.456

sense
AP+JSD
.583

form
CD
.496

sense
K-Means+WD

.332

sense

AP+JSD

.510
- - -

sense
AP+JSD
.712

- - - - -

Periti et al.
2022

sense
AP+JSD
.514*

-
sense

APP+JSD
.512*

- - - - - - - - - - -

Pömsl and Lyapin
2020

ensemble
APD
.246

ensemble
APD
.725

ensemble
APD
.463

ensemble
APD
.546

- - - -
ensemble

APD

.802
- - - - -

Rachinskiy and Arefyev
2021

- - - - - - - - -
ensemble
APD
.781

ensemble
APD
.803

ensemble
APD
.822

- -

Rachinskiy and Arefyev
2022

- - - - - - -
sense

APDP

.745
- - - - - -

Rodina et al.
2020

- - - - - - - - -
form
PRT
.557

sense
AP+JSD
.406

- - -

Rosin et al.
2022

form
CD
.467

-
form
CD
.512

- -
form

TD

.620
- - - - - - - -

Rosin and Radinsky
2022

form

CD

.627

form

CD

.763

form
CD
.565

- - - - - - - - - - -

Rother et al.
2020

sense
HDBSCAN

.512

sense
GMMs
.605

sense
GMMs
.321

sense
HDBSCAN

.308
- - - - - - - - - -

Ryzhova et al.
2021

- - - - - - - - -
ensemble
regression

.480*

ensemble
regression

.487*

ensemble
regression

.560*
-

Kudisov and Arefyev
2022

- - - - - - -
form
APD
.637

- - - - - -

Kutuzov
2020

form
APD
.605

form
PRT
.740

form
PRT
.561

form

APD

.610

sense
AP+JSD
.456*

- - - - - - - - -

Laicher et al.
2021

form
APD
.571*

form
CD
.755*

-
form
APD
.602*

- - - - - - - - - -

Liu et al.
2021

form
CD
.341

form
CD
.512

form
CD
.304

form
CD
.304

form
CD
.286

form
CD
.561

- - - - - - - -

Martinc et al.
2020c

ensemble
AP+JSD
.361

ensemble
AP+JSD
.642

form
CD
.496

ensemble
AP+JSD
.343

- - - - - - - - - -

Giulianelli et al.
2020

- - - -
form
APD
.285*

- - - - - - - - -

Giulianelli et al.
2022

form
APD
.514

ensemble
PRT
.354

ensemble

PRT

.572

ensemble
APD
.397

- - - - -
ensemble
APD+PRT

.376

form
APD
.480

form
APD
.457

ensemble

APD+PRT

.394

ensemble

APD

.503

Hu et al.
2019

- - - - - -
sense

MNS

.428*
- - - - - - -

Kanjirangat et al.
2020

sense
K-Means+JSD

.028*

sense
K-Means+JSD

.173*

sense
K-Means+JSD

.253*

sense
K-Means+CSC

.321*
- - - - - - - - - -

Karnysheva and Schwarz
2020

sense
K-Means+JSD

-.155*

sense
DBSCAN+JSD

.388*

sense
DBSCAN+JSD

.177*

sense
K-Means+JSD

-.062*
- - - - - - - - - -

Kashleva et al.
2022

- - - - - - -
sense
APDP
.553

- - - - - -

Keidar et al.
2022

form
APD
.489

- - - - - - - - - - - - -

Arefyev et al.
2021

- - - - - - - - -
form

APD

.825

form

APD

.821

form

APD

.823
- -

Arefyev and Zhikov
2020

sense
AGG+CD

.299

sense
AGG+CD

.094

sense
AGG+CD
-.134

sense
AGG+CD

.274
- - - - - - - - - -

Beck
2020

form
CD
.293*

form
CD
.414*

form
CD
.343*

form
CD
.300*

- - - - - - - - - -

Cuba Gyllensten et al.
2020

form
CD
.209*

form
CD
.656*

form
CD
.399*

form
CD
.234*

- - - - - - - - - -

Kutuzov et al.
2022b

form
APD
.605

form
PRT
.740

form
PRT
.561

form
APD
.569

form
APD
.394

- - - - - - - - -

Table 6. The Spearman’s correlation score of reviewed approaches in selected experiments. For each corpus, the top perfor-

mance is reported in bold. Asterisks denote experiments based on a pre-trained model.

Table 6, for each corpus, we highlight when a single time interval �1 − �2 or two consecutive time intervals
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�1 −�2 and �2 −�3 are considered, respectively. As a further remark, we note that the RSE Russian corpus is the
only case where a test-set for the time interval �1 −�3 as a whole is provided.

For the sake of readability, the performance according to the Spearman’s correlation scores shown in Table 6
are labeled with the semantic change function of the considered approach and the corresponding framing with
respect to form-based, sense-based, and ensemble-based categories (see Section 4).
As a general remark, we cannot ind an approach outperforming all the others on all the considered corpora.

This can suggest that an approach is language-dependent, namely it works well on one language and it is
not appropriate for others. By relying on the experiments presented in [73], the performance of an approach
is inluenced by the employed assessment measure in relation with the distribution of the gold scores in the
considered test-set. The experiments in [73] show that when the distribution of the gold scores is skewed,
namely some words are highly changed and some others are barely changeed, the APD measure achieves better
performance on Spearman’s correlation than the PRT measure. On the contrary, when the distribution of the
gold scores is almost uniform, namely most of the words are similarly changed, the PRT measure achieves better
performance than the APD measure.
As a further remark, we note that the approaches characterized by ine-tuning achieve greater performance.

This is also conirmed in the experiments of [92] where ine-tuning a LLM boosts the performance when the
LLM is not afected by under or over-itting.
On average, form-based approaches outperform sense-based approaches in Graded Change Detection tasks.

We argue that such a result is motivated by the structure of the test-sets, where just one semantic change score is
provided for each target word. Form-based approaches beneit from this structure since they work on measuring
the change over one general word property (i.e., the dominant sense, or the degree of polysemy). On the opposite,
sense-based approaches are disadvantaged by this structure since they work on measuring the change over
multiple word meanings and they need to produce a single, comprehensive change value that summarises all
the single-meaning changes for the comparison against the gold score. As a result, capturing some (minor)
meanings can negatively afect the comprehensive change value, and to address this issue, small clusters are
usually considered as possible noise and iltered out [93].
Table 6 shows that form-based approaches based on APD, CD, or PRT measures tend to obtain higher per-

formance than sense- and ensemble-based approaches. GEMS English, COHA English, and LSCD Spanish are
the only benchmarks where sense-based approaches outperform form-based ones. This can be motivated by the
small number of experiments performed. Indeed, for COHA English experiments with form-based approaches
have not been tested [58], while only a few experiments and a limited number of conigurations with form-based
approaches have been tested on GEMS English. For LSCD Spanish, the top performance is .745 and the cor-
responding approach leverages the APDP measure, which is an extension of APD characterized by the use of
an average-of-average operation. This result is in line with the intuition presented in [105], where the use of
averaging on top of clustering contributes to reduce the noise in the contextualized embeddings of the target
word.

We also note that ensemble approaches are on average characterized by high performance. In particular, top
performances are provided by ensemble approaches on SemEval Latin (.572), DURel German (.802), and NOR
Norwegian (.394 and .503). Notably, the performance on SemEval Latin are obtained by combining contextualized
embeddings and grammatical proiles, thereby conirming that word meanings are inluenced by morphology and
syntax, especially in some languages. It is also interesting to observe that the performance on DURel German are
obtained through an approach combining static and contextualized word embeddings, thus highlighting that such
a kind of combination can be efective. For NOR Norwegian in the time interval�1−�2, the best approach exploits
both APD and PRT; this is a further conirmation that APD and PRT are top-performing measures in semantic
change detection. For the subsequent time interval �2 −�3, the best result on NOR Norwegian is obtained with a
combination of APD with grammatical proiles. This is a conirmation of the intuition presented in [46], which
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suggests that ensembling grammatical proiles with contextualized embeddings can enhance performance by
incorporating morphological and syntactic features not fully captured by LLMs.

For SemEval English, SemEval German, the top performance are .627, .763, respectively, and they are obtained
by the time-aware approach proposed in [117]. Also for LivFC English (.620), the top performance is obtained
by leveraging a time-aware approach [116]. We argue that extra-linguistic information (e.g., time information)
can have a positive impact on performance. The injection of extra-linguistic information can contribute to
increase the performance also when small-size LLMs are employed, since they are less afected by noise than
larger models. As a conirmation, in contrast to the widespread belief that the larger the models the higher the
performance, the best result for SemEval English is obtained by exploiting contextualized embeddings generated
from a BERT-tiny model [117, 136]. This is also true for SemEval Swedish (.610), where the top performance is
obtained by calculating the APD measure over contextualized embeddings extracted from an ELMo model [72],
which is far smaller than LLMs.

Finally, we note that also the use of supervised learning modalities contributes to achieve high performance.
As an example, the top performances for RSE Russian are .825 on�1 −�2, .821 on�2 −�3, and .823 on�1 −�3 and
they are obtained by a form-based, supervised approach [6]. This is also conirmed by the recent introduction
of a novel LLM called XL-LEXEME [21], which has demonstrated exceptional performance across multiple
benchmarks [107].

6 Scalability, interpretability, and robustness issues

In this section, we analyze the LSC approaches by considering possible scalability, interpretability, and reliability
issues.

6.1 Scalability issues

In the LSC approaches, any occurrence of the target word considered for change assessment is represented by
a speciic embedding. As a basic implementation, all the contextualized embeddings are stored in memory for
processing. The higher the number of occurrences of a target word, the higher the number of embeddings to
manage. As a result, when the size of the diachronic corpus grows, possible issues arise both in terms of memory
and computation time. Similar issues occur when multiple target words are considered for change assessment.
In this case, a possible workaround for addressing the memory issue is to process one target word at a time.
However, in this way, the memory issue changes to a computation time issue. For feasibility convenience, most
experiments work on a small set of target words. This kind of limitations inhibits the possibility to address tasks
like the detection of the most changed word in a corpus. The need to work on solutions capable of dealing with
such a kind of scalability issues has recently been promoted in LSCDiscovery, where participants were asked to
assess the semantic change on all the words of the dictionary [143].

Some possible solutions to the scalability issues have been proposed in literature. For instance, approaches based
on measures that enforce aggregation by averaging (e.g., CD, PRT) are time-scalable, since only the prototypes
are considered for change assessment instead of the whole set of embeddings. Also approaches based on APD or
JSD measures can be adjusted to become time-scalable. In particular, the number of embeddings to store and
process can be reduced by random sampling the occurrences of the target word� . This means that i) a smaller
number of similarity scores needs to be calculated with APD (e.g., [122]), and ii) JSD works on top of clustering
algorithms that converge faster (e.g., [115]). As an alternative to random sampling, an online aggregation by
summing method is proposed in [100], where a predeined number of contextualized embeddings � is stored in
memory. An embedding � is stored when the number of embeddings in memory is less than � and � is strongly
dissimilar from all the other embeddings previously stored. If � is not stored, it is aggregated to the most similar
embedding stored in memory through sum.
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The dimensionality reduction of the embeddings is proposed as a further alternative to enforce scalability.
For example, in [118], the embedding dimensionality is reduced to 10 (from 768) by combining an autoencoder
with the UMAP (Uniform Manifold Approximation and Projection) algorithm [94]. In [67], UMAP and PCA
are used to project contextualized embedding into ℎ ∈ {2, 5, 10, 20, 50, 100} dimensions. With respect to this
solution, we argue that, although it can improve the memory scalability, time scalability is negatively afected
since dimensionality reduction takes time. However, in [118], it is shown that the dimensionality reduction can
still contribute to time scalability when the goal is to test and compare the efectiveness of diferent clustering
algorithms and the reduced embeddings are saved and re-used. As a further option, the use of small LLMs, such
as TinyBert or ELMo, is gaining more and more attention since the dimension of the generated embeddings is far
lower (e.g., [117]).
Scalability issues can also arise when the change needs to be assessed on a corpus � =

⋃�
� �� deined over

more than one time interval (� > 2). Typically, existing approaches calculate the change score � over each pair of
time intervals (�� , ��+1) by iteratively re-applying the same assessment worklow. As a diference, an incremental
approach based on a clustering algorithm called A Posteriori ainity Propagation (APP) is proposed in [22, 105, 106]
to speed up the aggregation stage. In each time interval, clustering is incrementally executed by considering
the prototypes of the previous time period (i.e., aggregation by averaging) and the incoming embeddings of the
current time period.

6.2 Interpretability issues

Interpretability issues arise when it is not possible to determine which meaning(s) have changed among all the
meanings of a target word, namely the meaning(s) that mainly caused the change score assessed by a considered
approach. Deinitely, form-based approaches are afected by such a kind of issues, since they model the change
as the change in the dominant sense or in the degree of polysemy of a word, without considering the possible
multiple meanings. On the opposite, sense-based approaches aim at providing an interpretation of the word
change, since they attempt to model the change by considering the multiple word senses. However, interpretability
issues can arise also when sense-based approaches are employed due to three main motivations.

Word meaning representation. Sense-based approaches mostly rely on clustering techniques to represent word
meanings. The K-Means and the AP clustering algorithms are usually employed to this end. K-Means requires that
the number of target clusters is predeined, and this can be inappropriate to efectively represent the meanings of
a target word that are not known beforehand. AP lets the number of target clusters emerge, but experimental
results show that the association of a cluster with a word meaning can be imprecise. We argue that this can be
due to the distributional nature of LLMs that tends to capture changes in contextual variance (i.e., word usages)
rather than changes in lexicographic senses (i.e., word meanings) [79]. As an example, sometimes AP produces
more than 100 clusters, which is rather unrealistic if we assume that a cluster represents a word meaning [105].
As a matter of fact, a word may completely change its context without changing its meaning [92].

Word meaning description. Each cluster obtained during the aggregation stage of a sense-based approach needs
to be associated with a description that denotes the corresponding word meaning. This can be done by human
experts on the basis of the cluster contents. However, this is time-consuming, given that a cluster can consist of
several hundreds/thousands of elements. As an alternative, clustering analysis techniques have been proposed
to label clusters by summarizing their contents. As a possible option, a cluster description can be extracted
from the content by considering the top featuring keywords based on lexical occurrences (e.g., Tf-Idf) [68, 100]
or substitutes [20]. In [45], the sense-prototype of a cluster is proposed as a cluster exemplar and the corpus
sentences that are closest to the prototype are adopted as cluster/meaning description. However, when a cluster
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contains outliers, these sentences could not provide an efective description. More recently, the use of Causal
LLMs has been proposed to generate descriptive cluster interpretations [22] or word usage deinitions [47].

Word meaning evolution. When a corpus � =

⋃�
� deined over more than one time interval is considered,

the clusters deined at a time step �� need to be linked to the clusters of the previous time-step ��−1 to trace the
evolution of the corresponding meaning over time (i.e., cluster/meaning history). Since the clustering executions
at each time-step are independent, the capability of recognizing corresponding clusters/meanings at diferent
time-steps can be challenging. As a possible solution, alignment techniques can be employed to link similar word
meanings in diferent, consecutive time periods [64, 100]. As a further option, evolutionary clustering algorithms
can be exploited without requiring any alignment mechanism across time periods [22, 105, 106].

6.3 Robustness issues

Robustness issues arise when the assessment score is not reliable due to data imbalance, model stability, and
model bias.

Data imbalance. The diachronic corpus C must equally relect the presence of the target word� in both the
time steps �1 and �2. This means that the frequency of� must not strongly change in the considered time period.
However, in common scenarios, more documents are available for the most recent time step �2 and łit may not be
possible to achieve balance in the sense expected from a modern corpusž [131]. As a consequence, the frequency of
� can be strongly higher in �2 than in �1 and the embeddings Φ� can produce a distorted representation of the
target word when the LLM is trained/ine-tuned (e.g., [139, 146]). As a further remark, data imbalance issues can
occur when some word meanings are more frequent than others. For instance, the dominant sense is usually
more represented than other senses in the corpus C. As a result, when a sense-based approach is adopted, the
embedding distributions �1, �2 can be skewed, meaning that a larger number of embeddings is associated with
the dominant sense rather than with the other minor senses. In sense-based approaches, the word meanings are
represented by clusters, and the number of clusters consistently relects word frequency [72]. When a meaning is
associated with a few embeddings/clusters, its contribution to the overall assessment score is marginally leading
to an inlated or underestimated assessment score. In this respect, a qualitative analysis of łpotentially erroneousž
outputs of reviewed approaches is presented in [79]. Some examples of potentially erroneous assessment scores
occur when i) a word with strongly context-dependent meanings is considered, whose embeddings are mutually
diferent; ii) a word is frequently used in a very speciic context in only one time step �1 or �2; iii) a word is afected
by a syntactic change, not a semantic one. In [86], a solution is proposed to reduce the false discovery rate
and to improve the precision of the change assessment by leveraging permutation-based statistical test and
term-frequency thresholding.

Model stability. Pre-trained LLMs are usually trained on modern text sources. For example, the original English
BERT model is pre-trained on Wikipedia and BooksCorpus [147]. As a result, pre-trained LLMs are prone to
represent words from a modern perspective, and thus they tend to ignore the temporal information of a considered
corpus. This way, when historical corpora are considered, the possible obsolete word usages cannot be properly
represented. This problem has been investigated in the literature by comparing the performance of pre-trained
against ine-tuned LLMs [73, 112]. In line with the considerations of Section 4.4, the results show that ine-tuning
the LLM on the whole diachronic corpus improves the quality of word representations for historical texts. Since
ine-tuning the LLM can be expensive in terms of time and computational resources, a measure for estimating
the model efectiveness for historical sources is presented in [61]. In particular, this measure is used to decide
whether a model should be re-trained or ine-tuned.
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Model bias. Contextualized embeddings can possibly be afected by biases on the encoded information. For
instance, a possible bias can arise from orthographic information, such as the word form and the position of a
word in a sentence, since they inluence the output of the top BERT layers [81]. Text pre-processing techniques are
proposed as a solution to reduce the inluence of orthography in the embeddings, thus increasing the robustness
of encoded semantic information. To this end, lower-casing the corpus text is a commonly-employed solution.
However, the lower-casing of words often conlates parts of speech, thus another possible bias can raise. For example,
the proper noun Apple and the common noun apple become identical after lower-casing [54]. The possible bias
introduced by Named Entities and proper nouns is investigated in [81, 93]. In [112], text normalization techniques
are proposed based on the removal of accent markers. In some languages, such a kind of normalization can
introduce a bias since diferent words can be conlated. For example, papà (e.g., the Italian word for dad) and papa
(e.g., the Italian word for pope) cannot be distinguished after the accent removal. Further text pre-processing
techniques can be employed to reduce the possible bias due to orthographic information. In [125], lemmatization
and punctuation removal are proposed. Experimental results on lemmatization for reducing the model bias on
BERT embeddings are presented in [81]. Further experiments show that lemmatizing the target word alone is
more beneicial than lemmatizing the whole corpus [81]. Filtering out content-light words, such as stop words
and low-frequency words, can be also beneicial [145]. As an alternative solution to reduce word-form biases, the
embedding of a word occurrence can be computed by averaging its original embedding and the embeddings of its
nearest words in the input sentence [145].

When aggregation by clustering is enforced, the possible word-form biases can afect the clustering result [81].
As a solution, clustering reinement techniques have been proposed. As an option, the removal of the clusters
containing only one or two instances is adopted, since they are not considered signiicant [93]. As a further
option, in [92], clusters with less than two members are considered as weak clusters and they are merged with the
closest strong cluster, i.e. cluster with more than two members. In [105], clusters containing less than 5 percent
of the whole set of embeddings are assumed to be poorly informative and are thus dropped. However, we argue
that the use of clustering reinement techniques must be carefully considered since also small clusters can be
important when the corpus is unbalanced in the number of meanings of a word.

7 Challenges and concluding remarks

In this article, we analyzed the LSC task by providing a formal deinition of the problem, and a reference
classiication framework based on meaning representation, time awareness, and learning modality dimensions.
The literature approaches are surveyed according to the given framework by considering the assessment function,
the employed LLM, the achieved performance, and the possible scalability/interpretability/robustness issues.

While we provide a solid framework for classiication LSC approaches, we acknowledge that the NLP research
on semantic change is rapidly evolving with new papers continually emerging. For example, various models
such as LLaMA [103], GPT [107], and ChatGPT [104] are being considered for LSC. Approaches based on lexical
substitutes are gaining popularity to analyze both the modern and the historical bias of LLMs [30]. Further
supervised [133] and unsupervised [2] approaches, along with diferent change functions [3] are appearing.
Additionally, new benchmarks for a larger gamma of languages are becoming available, including Chinese [24, 25],
Japanese [85], and Slovenian [111].

In [54, 74], an overview of open challenges for LSC is presented. In the following, we extend such an overview
by focusing on those challenges that are speciic to the existing approaches in relation with the issues discussed
in Section 6.

Scalability. The trend in LSC is to adopt increasingly larger models with the idea that they better represent
language features. As a consequence, scalability issues arise, and they are being addressed as discussed in
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Section 6.1. However, contrary to this trend, we argue that the use of small-size models, such as those introduced
in [116, 117], needs to be further explored since they are competitive in terms of performance.

Word meaning representation. In Section 5, we show that form-based approaches outperform sense-based
approaches in the Graded Change Detection assessment. However, we argue that sense-based approaches are
promising since they focus on encoding word senses and they can enrich the mere degree of semantic change
of a word� with the information about the speciic meaning of� that changed. In this direction, LSC should
be considered as a temporal/diachronic extension of other problems such as Word Sense Induction [5], Word
Meaning Disambiguation [48], and Word-in-Context [88].

So far, word senses have been represented through aggregation by clustering under the idea that each cluster
represents a speciic word meaning. However, according to the interpretability issues of Section 6, clustering
techniques are often afected by noise and they are typically capable of representing word usages rather than
word meanings. Thus, further investigations are required to represent lexicographic meanings in a more faithful
way.

Word meaning description. According to Section 6, current solutions to meaning description are focused
on determining a representative label taken from the cluster contents (e.g., Tf-Idf, sentence(s) featuring the
sense-prototype). Such solutions are mostly oriented to highlight the lexical features of the cluster/meaning
without considering any element that relects the cluster’s semantics. As a consequence, open challenges are
based on the need of comprehensive description techniques capable of capturing both lexical and semantic
aspects such as position in text, semantics, or co-occurrences across diferent documents. In a very recent work,
[47] propose interpreting the meaning of word usages by generating sense deinitions through novel generative
models. A main drawback is that diferent deinitions can be generated for usages related to the same meaning.
Nonetheless, we strongly suggest a change towards the latter solution, given that the new generative models
have demonstrated extraordinary capabilities.

Word meaning evolution. In shared competitions, the reference evaluation framework for LSC is based
on one/two time periods that are considered for LSC. The extension of the evaluation framework to consider
more time periods is an open challenge. In particular, methods and practices of LSC approaches need to be
tested/extended for detecting both short- and long-term semantic changes as well as for promoting the design of
incremental techniques able to handle dynamic corpora (i.e., corpora that become progressively available).

In this context, a further challenge is about the capability to trace the change of a meaning over multiple time
steps (i.e., meaning evolution). As mentioned in Section 2, alignment techniques can be used to link similar word
meanings in diferent, consecutive time periods. However, such a solution is not completely satisfactory due to
possible limitations (e.g., scalability, robustness of alignment), and further research work is needed to better track
the meaning evolution over time (e.g., [105]).

Model stability.Most of the approaches surveyed in this article are time-oblivious and face the problem of
model stability through ine-tuning. Since this practice can be expensive in terms of time and resources, we argue
that further research on the development of time-aware approaches is needed, in that, they do not sufer the
model stability problem.

Model bias. The solutions to model bias issues presented in Section 6 are language-dependent and they
are mainly exploited in approaches based on monolingual models. Further research work is needed to test the
efectiveness of existing solutions also in approaches based on multilingual LLMs. In addition, we argue that future
work should concern the application of denoising and debiasing techniques to both monolingual and multilingual
LLMs (e.g., [63]) with the aim to improve LSC performance by reducing orthographic biases regardless of the
language(s) on which the models were trained.
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Further challenges not strictly related to the issues of Section 6 are the following:

Semantic Change Interpretation. Most of the literature papers do not investigate the nature of the detected
change, meaning that they do not classify the semantic change according to the existing linguistics theory (e.g.,
amelioration, pejoration, broadening, narrowing, metaphorization, metonymization, and metonymy) [19, 55].
Further studies on the causes and types of semantic changes are needed [31]. These studies could be crucial to
detect łlawsž of semantic change that describe the condition under which the meanings of words are prone to
change. For example, some laws are hypothesized in [35, 53, 142], but later the validity of some of them has been
questioned [36]. Contextualized embeddings could contribute to test the validity of current laws and to propose
new ones. To the best of our knowledge, some steps in this direction are only moved in [58] for modeling the
word change from an ecological viewpoint.

Computational models of meaning change. Almost all experiments on LSC are based on BERT embeddings.
Although there are open questions about how to maximise the efectiveness of BERT embeddings in diferent
language setups, the efectiveness of BERT for LSC has been extensively investigated. We believe that LSC should
be extended by considering a wider range of models. Some work explored the efectiveness of ELMo [73, 115].
However, the performance of ELMo in diferent contexts and setups should be analyzed inmore detail. Furthermore,
it might be worth investigating smaller versions of BERT, like ALBERT [82] and DistilBERT [123]. Further models
can also be considered like seq2seq and generative models, which recently showed interesting results in the ield
of temporal Word-in-Context problem [89].

Multilingual models. In past shared competitions on LSC, monolingual models have generally been preferred
to multilingual ones. We believe that a systematic comparison of monolingual vs. multilingual models is required
to determine scenarios and conditions where the former type of models provides better performance than the
latter type or vice-versa. Multilingual embeddings can also contribute to LSC since they could enable a language-
independent semantic change assessment, meaning that the gold-scores of diferent languages can be exploited
as a whole for the evaluation of a given approach.

Cross-language change detection. As introduced in [91], further investigations are required to address the
problem of cross-language change detection. We argue that solutions to such a kind of problem can be also useful
for LSC since they can detect semantic change of cognates and borrowings (e.g., [41]), as well as contact-induced
semantic changes (e.g., [97])3.

Use cases. So far, LSC through contextualized embeddings is still a theoretical problem not yet integrated in
real application scenarios like historical information retrieval, lexicography, linguistic research, or social-analysis.
Among the existing use cases, semantic change has been examined by [16] to investigate sudden events that
radically alter public opinion on a topic, and by [95, 102] to explore shifts in olfactory perception and changes in
the descriptions of smells over time. We expect that further use cases and experiences will developed and shared
in the next future.

Context change over diferent domains. The attention gained by diachronic semantic change detection through
the use of word embeddings paved the way for modeling other linguistics issues such as the identiication of
diatopic lexical variation [128], the detection of semantic changes of grammatical constructions [40], or the
comparison of how speakers who disagree on a subject use the same words [43]. The reviewed approaches can
be tested and possibly extended to cope with such a kind of linguistics issues.

3In linguistics, cognates are sets of words in diferent languages that have been inherited in direct descent from an etymological ancestor

in a common parent language. Borrowings (or loanwords) are words adopted by the speakers of one language from a diferent language.

Contact-induced semantic changes are diachronic changes within a recipient language that are traceable to languages other than the direct

ancestor of the recipient language and that have spread and are conventionalized within a community speaking the recipient language.
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